Suppr超能文献

使用神经网络对光学相干断层扫描异常对年龄相关性黄斑变性视力的影响进行建模。

Use of a Neural Net to Model the Impact of Optical Coherence Tomography Abnormalities on Vision in Age-related Macular Degeneration.

作者信息

Aslam Tariq M, Zaki Haider R, Mahmood Sajjad, Ali Zaria C, Ahmad Nur A, Thorell Mariana R, Balaskas Konstantinos

机构信息

School of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Manchester Royal Eye Hospital, NHS Central Manchester University Hospitals, Manchester, United Kingdom.

School of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.

出版信息

Am J Ophthalmol. 2018 Jan;185:94-100. doi: 10.1016/j.ajo.2017.10.015. Epub 2017 Oct 31.

Abstract

PURPOSE

To develop a neural network for the estimation of visual acuity from optical coherence tomography (OCT) images of patients with neovascular age-related macular degeneration (AMD) and to demonstrate its use to model the impact of specific controlled OCT changes on vision.

DESIGN

Artificial intelligence (neural network) study.

METHODS

We assessed 1400 OCT scans of patients with neovascular AMD. Fifteen physical features for each eligible OCT, as well as patient age, were used as input data and corresponding recorded visual acuity as the target data to train, validate, and test a supervised neural network. We then applied this network to model the impact on acuity of defined OCT changes in subretinal fluid, subretinal hyperreflective material, and loss of external limiting membrane (ELM) integrity.

RESULTS

A total of 1210 eligible OCT scans were analyzed, resulting in 1210 data points, which were each 16-dimensional. A 10-layer feed-forward neural network with 1 hidden layer of 10 neurons was trained to predict acuity and demonstrated a root mean square error of 8.2 letters for predicted compared to actual visual acuity and a mean regression coefficient of 0.85. A virtual model using this network demonstrated the relationship of visual acuity to specific, programmed changes in OCT characteristics. When ELM is intact, there is a shallow decline in acuity with increasing subretinal fluid but a much steeper decline with equivalent increasing subretinal hyperreflective material. When ELM is not intact, all visual acuities are reduced. Increasing subretinal hyperreflective material or subretinal fluid in this circumstance reduces vision further still, but with a smaller gradient than when ELM is intact.

CONCLUSIONS

The supervised machine learning neural network developed is able to generate an estimated visual acuity value from OCT images in a population of patients with AMD. These findings should be of clinical and research interest in macular degeneration, for example in estimating visual prognosis or highlighting the importance of developing treatments targeting more visually destructive pathologies.

摘要

目的

开发一种神经网络,用于根据新生血管性年龄相关性黄斑变性(AMD)患者的光学相干断层扫描(OCT)图像估计视力,并展示其用于模拟特定可控OCT变化对视力影响的用途。

设计

人工智能(神经网络)研究。

方法

我们评估了1400例新生血管性AMD患者的OCT扫描。将每个合格OCT的15个物理特征以及患者年龄用作输入数据,并将相应记录的视力作为目标数据,以训练、验证和测试一个监督神经网络。然后,我们应用该网络来模拟视网膜下液、视网膜下高反射物质和外界膜(ELM)完整性丧失等特定OCT变化对视力的影响。

结果

共分析了1210例合格的OCT扫描,得到1210个数据点,每个数据点为16维。训练了一个具有1个含10个神经元的隐藏层的10层前馈神经网络来预测视力,与实际视力相比,预测的均方根误差为8.2个字母,平均回归系数为0.85。使用该网络的虚拟模型展示了视力与OCT特征的特定编程变化之间的关系。当ELM完整时,随着视网膜下液增加,视力呈轻度下降,但随着等量视网膜下高反射物质增加,视力下降更为陡峭。当ELM不完整时,所有视力均降低。在这种情况下,增加视网膜下高反射物质或视网膜下液会进一步降低视力,但梯度比ELM完整时小。

结论

所开发的监督机器学习神经网络能够从AMD患者群体的OCT图像中生成估计的视力值。这些发现对于黄斑变性的临床和研究具有重要意义,例如在估计视觉预后或强调开发针对更具视觉破坏性病变的治疗方法的重要性方面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验