Suppr超能文献

开发和验证一种多算法分析平台以检测机械通气脱靶

Development and Validation of a Multi-Algorithm Analytic Platform to Detect Off-Target Mechanical Ventilation.

机构信息

Division of Pulmonary, Critical Care, and Sleep Medicine, University of California Davis, Sacramento, CA, USA.

School of Medicine, University of California Davis, Sacramento, CA, USA.

出版信息

Sci Rep. 2017 Nov 3;7(1):14980. doi: 10.1038/s41598-017-15052-x.

Abstract

Healthcare-specific analytic software is needed to process the large volumes of streaming physiologic waveform data increasingly available from life support devices such as mechanical ventilators. Detection of clinically relevant events from these data streams will advance understanding of critical illness, enable real-time clinical decision support, and improve both clinical outcomes and patient experience. We used mechanical ventilation waveform data (VWD) as a use case to address broader issues of data access and analysis including discrimination between true events and waveform artifacts. We developed an open source data acquisition platform to acquire VWD, and a modular, multi-algorithm analytic platform (ventMAP) to enable automated detection of off-target ventilation (OTV) delivery in critically-ill patients. We tested the hypothesis that use of artifact correction logic would improve the specificity of clinical event detection without compromising sensitivity. We showed that ventMAP could accurately detect harmful forms of OTV including excessive tidal volumes and common forms of patient-ventilator asynchrony, and that artifact correction significantly improved the specificity of event detection without decreasing sensitivity. Our multi-disciplinary approach has enabled automated analysis of high-volume streaming patient waveform data for clinical and translational research, and will advance the study and management of critically ill patients requiring mechanical ventilation.

摘要

需要医疗专用分析软件来处理大量来自生命支持设备(如呼吸机)的流式生理波形数据。从这些数据流中检测到临床相关事件将有助于深入了解危重病,实现实时临床决策支持,并改善临床结果和患者体验。我们使用机械通气波形数据 (VWD) 作为用例来解决更广泛的数据访问和分析问题,包括区分真实事件和波形伪影。我们开发了一个开源数据采集平台来采集 VWD,并开发了一个模块化、多算法分析平台(ventMAP),以实现对重症患者的目标外通气 (OTV) 输送的自动检测。我们假设使用伪影校正逻辑会提高临床事件检测的特异性,而不会降低敏感性。我们表明,ventMAP 可以准确检测有害的 OTV 形式,包括过度潮气量和常见的患者-呼吸机不同步形式,并且伪影校正可以显著提高事件检测的特异性,而不会降低敏感性。我们的多学科方法使我们能够对大容量流式患者波形数据进行自动分析,用于临床和转化研究,并将推动需要机械通气的重症患者的研究和管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed23/5670237/f9181e4cdf36/41598_2017_15052_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验