Suppr超能文献

大数据和机器学习能否增进我们对急性呼吸窘迫综合征的理解?

Can Big Data and Machine Learning Improve Our Understanding of Acute Respiratory Distress Syndrome?

作者信息

Bhattarai Sanket, Gupta Ashish, Ali Eiman, Ali Moeez, Riad Mohamed, Adhikari Prakash, Mostafa Jihan A

机构信息

Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.

Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.

出版信息

Cureus. 2021 Feb 24;13(2):e13529. doi: 10.7759/cureus.13529.

Abstract

Acute respiratory distress syndrome (ARDS) accounts for 10% of all diagnoses in the Intensive Care Unit, and about 40% of the patients succumb to the disease. Clinical methods alone can result in the under-recognition of this heterogeneous syndrome. The purpose of this study is to evaluate the role that big data and machine learning (ML) have played in understanding the heterogeneity of the disease and the development of various prediction algorithms. Most of the work in the field of ML in ARDS has been in the development of prediction models that have comparable efficacies to that of traditional models. Prediction algorithms have been useful in identifying new variables that may be important to consider in the future, supplementing the unknown information with the help of available noninvasive parameters, as well as predicting mortality. Phenotype identification using an unsupervised ML algorithm has been pivotal in classifying the heterogeneous population into more homogenous classes. Big data generated from ventilators in the form of ventilator waveform analysis and images in the form of radiomics have also been leveraged for the identification of the syndrome and can be incorporated into a clinical decision support system. Although the results are promising, lack of generalizability, "black box" nature of algorithms and concerns about "alarm fatigue" should be addressed for more mainstream adoption of these models.

摘要

急性呼吸窘迫综合征(ARDS)占重症监护病房所有诊断病例的10%,约40%的患者死于该疾病。仅依靠临床方法可能会导致对这种异质性综合征的认识不足。本研究的目的是评估大数据和机器学习(ML)在理解该疾病的异质性以及各种预测算法开发中所起的作用。ARDS领域中ML的大部分工作都集中在开发与传统模型具有相当疗效的预测模型上。预测算法有助于识别未来可能需要考虑的重要新变量,借助可用的非侵入性参数补充未知信息,并预测死亡率。使用无监督ML算法进行表型识别对于将异质性人群分类为更同质的类别至关重要。以呼吸机波形分析形式从呼吸机产生的大数据以及以放射组学形式的图像也已用于该综合征的识别,并可纳入临床决策支持系统。尽管结果很有前景,但为了使这些模型更广泛地被采用,应解决缺乏普遍性、算法的“黑箱”性质以及对“警报疲劳”的担忧等问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de43/7996475/53807c0872ab/cureus-0013-00000013529-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验