Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
Department of Land, Air, and Water Resources, University of California, Davis, CA 95616, USA.
Environ Pollut. 2018 Feb;233:464-473. doi: 10.1016/j.envpol.2017.10.029. Epub 2017 Nov 5.
In China, ozone pollution shows an increasing trend and becomes the primary air pollutant in warm seasons. Leveraging the air quality monitoring network, a random forest model is developed to predict the daily maximum 8-h average ozone concentrations ([O]) across China in 2015 for human exposure assessment. This model captures the observed spatiotemporal variations of [O] by using the data of meteorology, elevation, and recent-year emission inventories (cross-validation R = 0.69 and RMSE = 26 μg/m). Compared with chemical transport models that require a plenty of variables and expensive computation, the random forest model shows comparable or higher predictive performance based on only a handful of readily-available variables at much lower computational cost. The nationwide population-weighted [O] is predicted to be 84 ± 23 μg/m annually, with the highest seasonal mean in the summer (103 ± 8 μg/m). The summer [O] is predicted to be the highest in North China (125 ± 17 μg/m). Approximately 58% of the population lives in areas with more than 100 nonattainment days ([O]>100 μg/m), and 12% of the population are exposed to [O]>160 μg/m (WHO Interim Target 1) for more than 30 days. As the most populous zones in China, the Beijing-Tianjin Metro, Yangtze River Delta, Pearl River Delta, and Sichuan Basin are predicted to be at 154, 141, 124, and 98 nonattainment days, respectively. Effective controls of O pollution are urgently needed for the highly-populated zones, especially the Beijing-Tianjin Metro with seasonal [O] of 140 ± 29 μg/m in summer. To the best of the authors' knowledge, this study is the first statistical modeling work of ambient O for China at the national level. This timely and extensively validated [O] dataset is valuable for refining epidemiological analyses on O pollution in China.
在中国,臭氧污染呈上升趋势,已成为温暖季节的主要空气污染物。本研究利用空气质量监测网络,开发了一个随机森林模型,以预测 2015 年中国每日最大 8 小时平均臭氧浓度([O]),用于人体暴露评估。该模型通过使用气象、海拔和近年排放清单数据,捕捉到了[O]的观测时空变化(交叉验证 R=0.69,RMSE=26μg/m)。与需要大量变量和昂贵计算的化学输送模型相比,随机森林模型仅基于少数几个易于获得的变量,以更低的计算成本,具有相当或更高的预测性能。预测全国人口加权[O]年均值为 84±23μg/m,夏季最高(103±8μg/m)。预测华北地区夏季[O]最高(125±17μg/m)。约 58%的人口生活在臭氧超过 100 天([O]>100μg/m)的非达标区,12%的人口暴露于[O]>160μg/m(世卫组织暂定目标 1)超过 30 天。作为中国人口最多的地区,京津冀、长三角、珠三角和四川盆地预计将分别有 154、141、124 和 98 天臭氧不达标。这些人口密集地区急需对臭氧污染进行有效控制,特别是京津冀地区,夏季[O]季节性高达 140±29μg/m。据作者所知,这是首次在中国进行全国范围的环境臭氧统计建模工作。这个及时且经过广泛验证的[O]数据集对于在中国进行臭氧污染的流行病学分析具有重要价值。