Suppr超能文献

利用随机森林模型对中国地区日环境臭氧浓度进行时空预测,以进行人群暴露评估。

Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment.

机构信息

Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China.

Department of Land, Air, and Water Resources, University of California, Davis, CA 95616, USA.

出版信息

Environ Pollut. 2018 Feb;233:464-473. doi: 10.1016/j.envpol.2017.10.029. Epub 2017 Nov 5.

Abstract

In China, ozone pollution shows an increasing trend and becomes the primary air pollutant in warm seasons. Leveraging the air quality monitoring network, a random forest model is developed to predict the daily maximum 8-h average ozone concentrations ([O]) across China in 2015 for human exposure assessment. This model captures the observed spatiotemporal variations of [O] by using the data of meteorology, elevation, and recent-year emission inventories (cross-validation R = 0.69 and RMSE = 26 μg/m). Compared with chemical transport models that require a plenty of variables and expensive computation, the random forest model shows comparable or higher predictive performance based on only a handful of readily-available variables at much lower computational cost. The nationwide population-weighted [O] is predicted to be 84 ± 23 μg/m annually, with the highest seasonal mean in the summer (103 ± 8 μg/m). The summer [O] is predicted to be the highest in North China (125 ± 17 μg/m). Approximately 58% of the population lives in areas with more than 100 nonattainment days ([O]>100 μg/m), and 12% of the population are exposed to [O]>160 μg/m (WHO Interim Target 1) for more than 30 days. As the most populous zones in China, the Beijing-Tianjin Metro, Yangtze River Delta, Pearl River Delta, and Sichuan Basin are predicted to be at 154, 141, 124, and 98 nonattainment days, respectively. Effective controls of O pollution are urgently needed for the highly-populated zones, especially the Beijing-Tianjin Metro with seasonal [O] of 140 ± 29 μg/m in summer. To the best of the authors' knowledge, this study is the first statistical modeling work of ambient O for China at the national level. This timely and extensively validated [O] dataset is valuable for refining epidemiological analyses on O pollution in China.

摘要

在中国,臭氧污染呈上升趋势,已成为温暖季节的主要空气污染物。本研究利用空气质量监测网络,开发了一个随机森林模型,以预测 2015 年中国每日最大 8 小时平均臭氧浓度([O]),用于人体暴露评估。该模型通过使用气象、海拔和近年排放清单数据,捕捉到了[O]的观测时空变化(交叉验证 R=0.69,RMSE=26μg/m)。与需要大量变量和昂贵计算的化学输送模型相比,随机森林模型仅基于少数几个易于获得的变量,以更低的计算成本,具有相当或更高的预测性能。预测全国人口加权[O]年均值为 84±23μg/m,夏季最高(103±8μg/m)。预测华北地区夏季[O]最高(125±17μg/m)。约 58%的人口生活在臭氧超过 100 天([O]>100μg/m)的非达标区,12%的人口暴露于[O]>160μg/m(世卫组织暂定目标 1)超过 30 天。作为中国人口最多的地区,京津冀、长三角、珠三角和四川盆地预计将分别有 154、141、124 和 98 天臭氧不达标。这些人口密集地区急需对臭氧污染进行有效控制,特别是京津冀地区,夏季[O]季节性高达 140±29μg/m。据作者所知,这是首次在中国进行全国范围的环境臭氧统计建模工作。这个及时且经过广泛验证的[O]数据集对于在中国进行臭氧污染的流行病学分析具有重要价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验