Department of Environmental Science and Engineering , Sichuan University , Chengdu , Sichuan 610065 , China.
Institute for Disaster Management and Reconstruction , Sichuan University , Chengdu , Sichuan 610200 , China.
Environ Sci Technol. 2018 Apr 3;52(7):4180-4189. doi: 10.1021/acs.est.7b05669. Epub 2018 Mar 22.
A novel model named random-forest-spatiotemporal-kriging (RF-STK) was developed to estimate the daily ambient NO concentrations across China during 2013-2016 based on the satellite retrievals and geographic covariates. The RF-STK model showed good prediction performance, with cross-validation R = 0.62 (RMSE = 13.3 μg/m) for daily and R = 0.73 (RMSE = 6.5 μg/m) for spatial predictions. The nationwide population-weighted multiyear average of NO was predicted to be 30.9 ± 11.7 μg/m (mean ± standard deviation), with a slowly but significantly decreasing trend at a rate of -0.88 ± 0.38 μg/m/year. Among the main economic zones of China, the Pearl River Delta showed the fastest decreasing rate of -1.37 μg/m/year, while the Beijing-Tianjin Metro did not show a temporal trend ( P = 0.32). The population-weighted NO was predicted to be the highest in North China (40.3 ± 10.3 μg/m) and lowest in Southwest China (24.9 ± 9.4 μg/m). Approximately 25% of the population lived in nonattainment areas with annual-average NO > 40 μg/m. A piecewise linear function with an abrupt point around 100 people/km characterized the relationship between the population density and the NO, indicating a threshold of aggravated NO pollution due to urbanization. Leveraging the ground-level NO observations, this study fills the gap of statistically modeling nationwide NO in China, and provides essential data for epidemiological research and air quality management.
提出了一种名为随机森林时空克里金(RF-STK)的新模型,该模型基于卫星反演数据和地理协变量,用于估算 2013-2016 年期间中国的日环境 NO 浓度。RF-STK 模型表现出良好的预测性能,其对每日和空间预测的交叉验证 R 值分别为 0.62(RMSE=13.3μg/m)和 0.73(RMSE=6.5μg/m)。预测全国范围内人口加权多年平均 NO 浓度为 30.9±11.7μg/m(均值±标准差),呈缓慢但显著的下降趋势,下降率为-0.88±0.38μg/m/年。在中国的主要经济区中,珠江三角洲的下降速度最快,为-1.37μg/m/年,而京津冀地区则没有表现出时间趋势(P=0.32)。预测人口加权的 NO 浓度在华北地区最高(40.3±10.3μg/m),在西南地区最低(24.9±9.4μg/m)。约有 25%的人口生活在年平均 NO 浓度大于 40μg/m 的未达标地区。人口密度与 NO 之间的关系呈分段线性函数,在 100 人/km 左右有一个突然点,表明由于城市化导致的 NO 污染加剧存在一个阈值。利用地面 NO 观测数据,本研究填补了中国全国范围内 NO 统计建模的空白,为流行病学研究和空气质量管理提供了必要的数据。