Suppr超能文献

手性控制纳米颗粒的反应扩散以抑制癌细胞

Chirality Controls Reaction-Diffusion of Nanoparticles for Inhibiting Cancer Cells.

作者信息

Du Xuewen, Zhou Jie, Wang Jiaqing, Zhou Rong, Xu Bing

机构信息

Department of Chemistry, Brandeis University, 415 South St. Waltham, MA 02454 (USA).

出版信息

ChemNanoMat. 2017 Jan;3(1):17-21. doi: 10.1002/cnma.201600258. Epub 2016 Oct 11.

Abstract

Reaction-diffusion (RD) is the most important inherent feature of living organism, but it has yet to be used for developing biofunctional nanoparticles (NPs). Here we show the use of chirality to control the RD of NPs for selectively inhibiting cancer cells. We observe that L-phosphotyrosine (L-pY) decorated NPs (NP@L-pYs) are innocuous to cells, but D-pY decorated ones (NP@D-pYs) selectively inhibit cancer cells. Our study shows that alkaline phosphatases (ALP), presented in the culture and overexpressed on the cancer cells, dephosphorylates NP@L-pYs much faster than NP@D-pYs. Such a rate difference allows the NP@D-pYs to be mainly dephosphorylated on cell surface, thus adhering selectively on the cancer cells to result in poly(ADP-ribose)polymerase (PARP) hyperactivation mediated cell death. Without phosphate groups or being prematurely dephosphorylated before reaching cancer cells (as the case of NP@L-pYs), the NPs are innocuous to cells. Moreover, NP@D-pYs even exhibit more potent activity than cisplatin for inhibiting platinum-resistant ovarian cancer cells (e.g., A2780-cis). As the first example of chirality controlling RD process of NPs for inhibiting cancer cells, this work illustrates a fundamentally new way for developing nanomedicine based on RD processes and nanoparticles.

摘要

反应扩散(RD)是生物体最重要的固有特征,但尚未被用于开发生物功能纳米颗粒(NP)。在此,我们展示了利用手性来控制纳米颗粒的反应扩散以选择性抑制癌细胞。我们观察到,L-磷酸酪氨酸(L-pY)修饰的纳米颗粒(NP@L-pYs)对细胞无害,但D-pY修饰的纳米颗粒(NP@D-pYs)能选择性地抑制癌细胞。我们的研究表明,存在于培养基中且在癌细胞上过表达的碱性磷酸酶(ALP)使NP@L-pYs去磷酸化的速度比NP@D-pYs快得多。这种速率差异使得NP@D-pYs主要在细胞表面去磷酸化,从而选择性地黏附在癌细胞上,导致聚(ADP-核糖)聚合酶(PARP)过度激活介导的细胞死亡。没有磷酸基团或在到达癌细胞之前过早去磷酸化(如NP@L-pYs的情况)时,纳米颗粒对细胞是无害的。此外,NP@D-pYs在抑制铂耐药卵巢癌细胞(如A2780-cis)方面甚至比顺铂表现出更强的活性。作为手性控制纳米颗粒反应扩散过程以抑制癌细胞的首个实例,这项工作阐明了一种基于反应扩散过程和纳米颗粒开发纳米医学的全新方式。

相似文献

1
Chirality Controls Reaction-Diffusion of Nanoparticles for Inhibiting Cancer Cells.
ChemNanoMat. 2017 Jan;3(1):17-21. doi: 10.1002/cnma.201600258. Epub 2016 Oct 11.
3
[Antitumor effects of redox-responsive nanoparticles containing platinum(Ⅳ)in ovarian cancer].
Zhonghua Zhong Liu Za Zhi. 2024 Jan 23;46(1):76-85. doi: 10.3760/cma.j.cn112152-20231024-00239.
6
Biodegradable nanoparticles decorated with different carbohydrates for efficient macrophage-targeted gene therapy.
J Control Release. 2020 Jul 10;323:179-190. doi: 10.1016/j.jconrel.2020.03.044. Epub 2020 Apr 22.
7
FXIIIa substrate peptide decorated BLZ945 nanoparticles for specifically remodeling tumor immunity.
Biomater Sci. 2020 Oct 21;8(20):5666-5676. doi: 10.1039/d0bm00713g. Epub 2020 Sep 11.
10
Dual-Targeting Nanoparticles for In Vivo Delivery of Suicide Genes to Chemotherapy-Resistant Ovarian Cancer Cells.
Mol Cancer Ther. 2017 Feb;16(2):323-333. doi: 10.1158/1535-7163.MCT-16-0501. Epub 2016 Dec 12.

引用本文的文献

1
Self-Assembly of Noncanonical Peptides: A New Frontier in Cancer Therapeutics and Beyond.
Macromol Biosci. 2025 Aug;25(8):e2500153. doi: 10.1002/mabi.202500153. Epub 2025 Apr 22.
2
Considering the impact of the chirality of therapeutic nanoparticles on cancer therapy.
Nanomedicine (Lond). 2024;19(28):2331-2334. doi: 10.1080/17435889.2024.2403320. Epub 2024 Sep 24.
3
Chirality-enhanced transport and drug delivery of graphene nanocarriers to tumor-like cellular spheroid.
Front Chem. 2023 Aug 2;11:1207579. doi: 10.3389/fchem.2023.1207579. eCollection 2023.
5
Chiral nanomaterials for tumor therapy: autophagy, apoptosis, and photothermal ablation.
J Nanobiotechnology. 2021 Jul 22;19(1):220. doi: 10.1186/s12951-021-00965-7.
6
Enzymatic Noncovalent Synthesis of Supramolecular Soft Matter for Biomedical Applications.
Matter. 2019 Nov 6;1(5):1127-1147. doi: 10.1016/j.matt.2019.09.015.
7
Chiral Plasmonics and Their Potential for Point-of-Care Biosensing Applications.
Sensors (Basel). 2020 Feb 10;20(3):944. doi: 10.3390/s20030944.
8
Dynamic Continuum of Molecular Assemblies for Controlling Cell Fates.
Chembiochem. 2019 Oct 1;20(19):2442-2446. doi: 10.1002/cbic.201900168. Epub 2019 Jun 27.
9
Enzymatic Self-Assembly Confers Exceptionally Strong Synergism with NF-κB Targeting for Selective Necroptosis of Cancer Cells.
J Am Chem Soc. 2018 Feb 14;140(6):2301-2308. doi: 10.1021/jacs.7b12368. Epub 2018 Feb 6.
10
Self-Assembling Ability Determines the Activity of Enzyme-Instructed Self-Assembly for Inhibiting Cancer Cells.
J Am Chem Soc. 2017 Nov 1;139(43):15377-15384. doi: 10.1021/jacs.7b07147. Epub 2017 Oct 23.

本文引用的文献

2
A Mechanogenetic Toolkit for Interrogating Cell Signaling in Space and Time.
Cell. 2016 Jun 2;165(6):1507-1518. doi: 10.1016/j.cell.2016.04.045. Epub 2016 May 12.
3
Reaction-diffusion processes at the nano- and microscales.
Nat Nanotechnol. 2016 Apr;11(4):312-9. doi: 10.1038/nnano.2016.41.
4
Enzyme-Instructed Self-Assembly of Small D-Peptides as a Multiple-Step Process for Selectively Killing Cancer Cells.
J Am Chem Soc. 2016 Mar 23;138(11):3813-23. doi: 10.1021/jacs.5b13541. Epub 2016 Mar 11.
5
Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials.
Chem Rev. 2015 Dec 23;115(24):13165-307. doi: 10.1021/acs.chemrev.5b00299. Epub 2015 Dec 8.
6
Tumor-Specific Formation of Enzyme-Instructed Supramolecular Self-Assemblies as Cancer Theranostics.
ACS Nano. 2015 Oct 27;9(10):9517-27. doi: 10.1021/acsnano.5b03874. Epub 2015 Aug 27.
7
Gold Nanomaterials at Work in Biomedicine.
Chem Rev. 2015 Oct 14;115(19):10410-88. doi: 10.1021/acs.chemrev.5b00193. Epub 2015 Aug 21.
8
Molecular Interactions in Organic Nanoparticles for Phototheranostic Applications.
Chem Rev. 2015 Oct 14;115(19):11012-42. doi: 10.1021/acs.chemrev.5b00140. Epub 2015 Aug 5.
9
Enzyme-instructed self-assembly: a multistep process for potential cancer therapy.
Bioconjug Chem. 2015 Jun 17;26(6):987-99. doi: 10.1021/acs.bioconjchem.5b00196. Epub 2015 May 14.
10
Ectoenzyme switches the surface of magnetic nanoparticles for selective binding of cancer cells.
J Colloid Interface Sci. 2015 Jun 1;447:273-7. doi: 10.1016/j.jcis.2014.12.023. Epub 2014 Dec 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验