Seo Daeha, Southard Kaden M, Kim Ji-Wook, Lee Hyun Jung, Farlow Justin, Lee Jung-Uk, Litt David B, Haas Thomas, Alivisatos A Paul, Cheon Jinwoo, Gartner Zev J, Jun Young-Wook
Department of Otolaryngology, University of California, San Francisco, San Francisco, CA 94115, USA; Department of Chemistry and Department of Materials Sciences and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA; Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Kavli Energy NanoScience Institute, University of California, Berkeley and Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Department of Otolaryngology, University of California, San Francisco, San Francisco, CA 94115, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.
Cell. 2016 Jun 2;165(6):1507-1518. doi: 10.1016/j.cell.2016.04.045. Epub 2016 May 12.
Tools capable of imaging and perturbing mechanical signaling pathways with fine spatiotemporal resolution have been elusive, despite their importance in diverse cellular processes. The challenge in developing a mechanogenetic toolkit (i.e., selective and quantitative activation of genetically encoded mechanoreceptors) stems from the fact that many mechanically activated processes are localized in space and time yet additionally require mechanical loading to become activated. To address this challenge, we synthesized magnetoplasmonic nanoparticles that can image, localize, and mechanically load targeted proteins with high spatiotemporal resolution. We demonstrate their utility by investigating the cell-surface activation of two mechanoreceptors: Notch and E-cadherin. By measuring cellular responses to a spectrum of spatial, chemical, temporal, and mechanical inputs at the single-molecule and single-cell levels, we reveal how spatial segregation and mechanical force cooperate to direct receptor activation dynamics. This generalizable technique can be used to control and understand diverse mechanosensitive processes in cell signaling. VIDEO ABSTRACT.
尽管能够以精细的时空分辨率对机械信号通路进行成像和扰动的工具在各种细胞过程中具有重要意义,但一直难以实现。开发一种机械遗传学工具包(即对基因编码的机械感受器进行选择性和定量激活)面临的挑战源于这样一个事实,即许多机械激活过程在空间和时间上是局部化的,但还需要机械负载才能被激活。为了应对这一挑战,我们合成了磁等离子体纳米颗粒,它能够以高时空分辨率对靶向蛋白质进行成像、定位并施加机械负载。我们通过研究两种机械感受器Notch和E-钙黏蛋白的细胞表面激活来证明它们的实用性。通过在单分子和单细胞水平上测量细胞对一系列空间、化学、时间和机械输入的反应,我们揭示了空间隔离和机械力如何协同作用来指导受体激活动力学。这种可推广的技术可用于控制和理解细胞信号传导中各种机械敏感过程。视频摘要。