Biosciences, University of Exeter, Penryn, Cornwall TR10 9FE, UK.
Laboratoire de Biotechnologie de l'Environnement (LBE), Institut National de la Recherche Agronomique (IRNA), 11100 Narbonne, France.
Curr Biol. 2017 Nov 6;27(21):3390-3395.e4. doi: 10.1016/j.cub.2017.09.056. Epub 2017 Oct 26.
The ecology of microbes frequently involves the mixing of entire communities (community coalescence), for example, flooding events, host excretion, and soil tillage [1, 2], yet the consequences of this process for community structure and function are poorly understood [3-7]. Recent theory suggests that a community, due to coevolution between constituent species, may act as a partially cohesive unit [8-11], resulting in one community dominating after community coalescence. This dominant community is predicted to be the one that uses resources most efficiently when grown in isolation [11]. We experimentally tested these predictions using methanogenic communities, for which efficient resource use, quantified by methane production, requires coevolved cross-feeding interactions between species [12]. After propagation in laboratory-scale anaerobic digesters, community composition (determined from 16S rRNA sequencing) and methane production of mixtures of communities closely resembled that of the single most productive community grown in isolation. Analysis of each community's contribution toward the final mixture suggests that certain combinations of taxa within a community might be co-selected as a result of coevolved interactions. As a corollary of these findings, we also show that methane production increased with the number of inoculated communities. These findings are relevant to the understanding of the ecological dynamics of natural microbial communities, as well as demonstrating a simple method of predictably enhancing microbial community function in biotechnology, health, and agriculture [13].
微生物的生态学经常涉及整个群落的混合(群落凝聚),例如洪水事件、宿主排泄和土壤耕作[1,2],但这个过程对群落结构和功能的影响还知之甚少[3-7]。最近的理论表明,由于组成物种之间的共同进化,群落可能表现为一个部分有凝聚力的单元[8-11],导致在群落凝聚后一个群落占主导地位。这个优势群落预计是在分离培养时最有效地利用资源的群落[11]。我们使用产甲烷菌群落进行了实验测试,这些群落的有效资源利用,通过甲烷产量来量化,需要物种之间进化而来的交叉喂养相互作用[12]。在实验室规模的厌氧消化器中繁殖后,群落组成(通过 16S rRNA 测序确定)和混合物的甲烷产量与在分离培养中生长的单个最具生产力的群落非常相似。对每个群落对最终混合物的贡献的分析表明,群落内的某些分类群组合可能由于共同进化的相互作用而被共同选择。作为这些发现的推论,我们还表明甲烷产量随着接种的群落数量的增加而增加。这些发现与理解自然微生物群落的生态动态有关,同时也展示了一种简单的方法,可以在生物技术、健康和农业中可预测地增强微生物群落的功能[13]。