Štambuk Nikola, Konjevoda Paško, Turčić Petra, Kövér Katalin, Kujundžić Renata Novak, Manojlović Zoran, Gabričević Mario
Center for Nuclear Magnetic Resonance, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
Biosystems. 2018 Feb;164:199-216. doi: 10.1016/j.biosystems.2017.10.009. Epub 2017 Oct 28.
Sense and antisense peptides, i.e. peptides specified by complementary DNA and RNA sequences, interact with increased probability. Biro, Blalock, Mekler, Root-Bernstein and Siemion investigated the recognition rules of peptide-peptide interaction based on the complementary coding of DNA and RNA sequences in 3'→5' and 5'→3' directions. After more than three decades of theoretical and experimental investigations, the efficiency of this approach to predict peptide-peptide binding has been experimentally verified for more than 50 ligand-receptor systems, and represents a promising field of research. The natural genetic coding algorithm for sense and antisense peptide interactions combines following elements: of amino acid physico-chemical properties, stereochemical interaction, and bidirectional transcription. The interplay of these factors influences the specificity of sense-antisense peptide interactions, and affects the selection and evolution of peptide ligand-receptor systems. Complementary mRNA codon-tRNA anticodon complexes, and recently discovered Carter-Wolfenden tRNA acceptor-stem code, provide the basis for the rational modeling of peptide interactions based on their hydrophobic and lipophilic amino acid physico-chemical properties. It is shown that the interactions of complementary amino acid pairs according to the hydrophobic and lipophilic properties strongly depend on the central (second) purine base of the mRNA codon and its pyrimidine complement of the tRNA anticodon. This enables the development of new algorithms for the analysis of structure, function and evolution of protein and nucleotide sequences that take into account the residue's tendency to leave water and enter a nonpolar condensed phase considering its mass, size and accessible surface area. The practical applications of the sense-antisense peptide modeling are illustrated using different interaction assay types based on: microscale thermophoresis (MST), tryptophan fluorescence spectroscopy (TFS), nuclear magnetic resonance spectroscopy (NMR), and magnetic particles enzyme immunoassay (MPEIA). Various binding events and circumstances were considered, e.g., in situations with-short antisense peptide ligand (MST), L- and D-enantiomer acceptors (TFS), in low affinity conditions (NMR), and with more than one antisense peptide targeting hormone (MPEIA).
正义肽和反义肽,即由互补的DNA和RNA序列所确定的肽,相互作用的概率增加。比罗、布拉洛克、梅克勒、鲁特 - 伯恩斯坦和西缅研究了基于DNA和RNA序列在3'→5'和5'→3'方向上的互补编码的肽 - 肽相互作用的识别规则。经过三十多年的理论和实验研究,这种预测肽 - 肽结合的方法的有效性已在50多个配体 - 受体系统中得到实验验证,并且代表了一个有前途的研究领域。用于正义和反义肽相互作用的自然遗传编码算法结合了以下要素:氨基酸的物理化学性质、立体化学相互作用和双向转录。这些因素的相互作用影响正义 - 反义肽相互作用的特异性,并影响肽配体 - 受体系统的选择和进化。互补的mRNA密码子 - tRNA反密码子复合物,以及最近发现的卡特 - 沃尔芬登tRNA受体茎密码,为基于其疏水和亲水氨基酸物理化学性质的肽相互作用的合理建模提供了基础。结果表明,根据疏水和亲水性质,互补氨基酸对的相互作用强烈依赖于mRNA密码子的中心(第二个)嘌呤碱基及其tRNA反密码子的嘧啶互补碱基。这使得能够开发新的算法来分析蛋白质和核苷酸序列的结构、功能和进化,该算法考虑了残基考虑其质量、大小和可及表面积离开水并进入非极性凝聚相的趋势。使用基于以下不同相互作用测定类型说明了正义 - 反义肽建模的实际应用:微尺度热泳(MST)、色氨酸荧光光谱(TFS)、核磁共振光谱(NMR)和磁性颗粒酶免疫测定(MPEIA)。考虑了各种结合事件和情况,例如,在使用短反义肽配体的情况下(MST)、L - 和D - 对映体受体(TFS)、在低亲和力条件下(NMR)以及有不止一种反义肽靶向激素的情况下(MPEIA)。