Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99352, USA.
Joint Global Change Research Institute, Pacific Northwest National Laboratory, 5825 University Research Court, Suite 3500, College Park, MD, 20740, USA.
Nat Commun. 2017 Nov 6;8(1):1335. doi: 10.1038/s41467-017-01320-x.
Droughts and other extreme precipitation events are predicted to increase in intensity, duration, and extent, with uncertain implications for terrestrial carbon (C) sequestration. Soil wetting from above (precipitation) results in a characteristically different pattern of pore-filling than wetting from below (groundwater), with larger, well-connected pores filling before finer pore spaces, unlike groundwater rise in which capillary forces saturate the finest pores first. Here we demonstrate that pore-scale wetting patterns interact with antecedent soil moisture conditions to alter pore-scale, core-scale, and field-scale C dynamics. Drought legacy and wetting direction are perhaps more important determinants of short-term C mineralization than current soil moisture content in these soils. Our results highlight that microbial access to C is not solely limited by physical protection, but also by drought or wetting-induced shifts in hydrologic connectivity. We argue that models should treat soil moisture within a three-dimensional framework emphasizing hydrologic conduits for C and resource diffusion.
干旱和其他极端降水事件预计将在强度、持续时间和范围上增加,这对陆地碳(C)固存具有不确定的影响。来自上方的土壤湿润(降水)导致的孔隙填充模式与来自下方的湿润(地下水)明显不同,较大、连通良好的孔隙在较细的孔隙之前填充,而地下水上升则是毛细力首先使最细的孔隙饱和。在这里,我们证明了孔隙尺度的湿润模式与先前的土壤湿度条件相互作用,从而改变了孔隙尺度、岩心尺度和田间尺度的 C 动态。在这些土壤中,干旱遗留和湿润方向可能比当前土壤湿度更能决定短期 C 矿化作用。我们的结果表明,微生物对 C 的获取不仅受到物理保护的限制,还受到干旱或湿润诱导的水文连通性变化的限制。我们认为,模型应该在一个强调碳和资源扩散的三维水文管道的框架内处理土壤湿度。