Suppr超能文献

密码子偏好性、核苷酸选择和基因组大小可预测重新湿润土壤中细菌的原位生长速率和转录情况。

Codon bias, nucleotide selection, and genome size predict in situ bacterial growth rate and transcription in rewetted soil.

作者信息

Chuckran Peter F, Estera-Molina Katerina, Nicolas Alexa M, Sieradzki Ella T, Dijkstra Paul, Firestone Mary K, Pett-Ridge Jennifer, Blazewicz Steven J

机构信息

Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720.

Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550.

出版信息

Proc Natl Acad Sci U S A. 2025 Jan 21;122(3):e2413032122. doi: 10.1073/pnas.2413032122. Epub 2025 Jan 13.

Abstract

In soils, the first rain after a prolonged dry period represents a major pulse event impacting soil microbial community function, yet we lack a full understanding of the genomic traits associated with the microbial response to rewetting. Genomic traits such as codon usage bias and genome size have been linked to bacterial growth in soils-however, often through measurements in culture. Here, we used metagenome-assembled genomes (MAGs) with O-water stable isotope probing and metatranscriptomics to track genomic traits associated with growth and transcription of soil microorganisms over one week following rewetting of a grassland soil. We found that codon bias in ribosomal protein genes was the strongest predictor of growth rate. We also found higher growth rates in bacteria with smaller genomes, suggesting that reduced genome size enables a faster response to pulses in soil bacteria. Faster transcriptional upregulation of ribosomal protein genes was associated with high codon bias and increased nucleotide skew. We found that several of these relationships existed within phyla, indicating that these associations between genomic traits and activity could be generalized characteristics of soil bacteria. Finally, we used publicly available metagenomes to assess the distribution of codon bias across a pH gradient and found that microbial communities in higher pH soils-which are often more water limited and pulse driven-have higher codon usage bias in their ribosomal protein genes. Together, these results provide evidence that genomic characteristics affect soil microbial activity during rewetting and pose a potential fitness advantage for soil bacteria where water and nutrient availability are episodic.

摘要

在土壤中,长期干旱后的第一场雨是影响土壤微生物群落功能的主要脉冲事件,但我们对与微生物对再湿润反应相关的基因组特征仍缺乏全面了解。密码子使用偏好和基因组大小等基因组特征已与土壤中细菌的生长相关联——然而,通常是通过在培养物中的测量来实现的。在这里,我们使用宏基因组组装基因组(MAGs)结合重水稳定同位素探测和宏转录组学,来追踪草地土壤再湿润后一周内与土壤微生物生长和转录相关的基因组特征。我们发现核糖体蛋白基因中的密码子偏好是生长速率的最强预测指标。我们还发现基因组较小的细菌生长速率更高,这表明基因组大小的减小使土壤细菌能够对脉冲做出更快的反应。核糖体蛋白基因更快的转录上调与高密码子偏好和核苷酸偏斜增加有关。我们发现这些关系中有几种存在于门内,这表明基因组特征与活性之间的这些关联可能是土壤细菌的普遍特征。最后,我们使用公开可用的宏基因组来评估密码子偏好在pH梯度上的分布,发现pH值较高的土壤中的微生物群落——通常水分限制更大且受脉冲驱动——其核糖体蛋白基因中的密码子使用偏好更高。总之,这些结果提供了证据,表明基因组特征在再湿润过程中影响土壤微生物活性,并为水和养分供应不稳定的土壤细菌带来潜在的适应性优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a49/11761963/8f194d595ad2/pnas.2413032122fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验