Suppr超能文献

ZrSiS 中有效赝自旋散射的观测。

Observation of Effective Pseudospin Scattering in ZrSiS.

机构信息

Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore , Singapore 117546.

Department of Physics, National University of Singapore , Singapore 117542.

出版信息

Nano Lett. 2017 Dec 13;17(12):7213-7217. doi: 10.1021/acs.nanolett.7b02307. Epub 2017 Nov 20.

Abstract

3D Dirac semimetals are an emerging class of materials that possess topological electronic states with a Dirac dispersion in their bulk. In nodal-line Dirac semimetals, the conductance and valence bands connect along a closed path in momentum space, leading to the prediction of pseudospin vortex rings and pseudospin skyrmions. Here, we use Fourier transform scanning tunneling spectroscopy (FT-STS) at 4.5 K to resolve quasiparticle interference (QPI) patterns at single defect centers on the surface of the line nodal semimetal zirconium silicon sulfide (ZrSiS). Our QPI measurements show pseudospin conservation at energies close to the line node. In addition, we determine the Fermi velocity to be ℏv = 2.65 ± 0.10 eV Å in the Γ-M direction ∼300 meV above the Fermi energy E and the line node to be ∼140 meV above E. More importantly, we find that certain scatterers can introduce energy-dependent nonpreservation of pseudospin, giving rise to effective scattering between states with opposite pseudospin deep inside valence and conduction bands. Further investigations of quasiparticle interference at the atomic level will aid defect engineering at the synthesis level, needed for the development of lower-power electronics via dissipationless electronic transport in the future.

摘要

三维狄拉克半金属是一类新兴的材料,具有体相的狄拉克色散的拓扑电子态。在线性节点狄拉克半金属中,电导带和价带在动量空间中沿着闭合路径连接,从而预测出赝自旋涡旋环和赝自旋斯格明子。在这里,我们使用在 4.5 K 下进行的傅里叶变换扫描隧道光谱学(FT-STS),在线节点半金属锆硅硫化物(ZrSiS)表面的单个缺陷中心上解析准粒子干涉(QPI)模式。我们的 QPI 测量结果表明,在接近线节点的能量处存在赝自旋守恒。此外,我们确定费米速度为ℏ v = 2.65 ± 0.10 eV Å,在Γ-M 方向上约为费米能 E 上方 300 meV,线节点约为 E 上方 140 meV。更重要的是,我们发现某些散射体可以引入与赝自旋相关的能量非守恒,导致在价带和导带深处具有相反赝自旋的状态之间发生有效的散射。进一步研究原子水平上的准粒子干涉将有助于在合成水平上进行缺陷工程,为未来通过无损耗电子输运开发低功耗电子学提供支持。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验