Materials Science and Engineering, University of Michigan , 2300 Hayward Street, Ann Arbor, Michigan 48109-2136, United States.
Macromolecular Science and Engineering, Chemical Engineering, Biomedical Engineering, Chemistry, and Biointerface Institute, University of Michigan , Ann Arbor 48109, United States.
ACS Appl Mater Interfaces. 2017 Dec 6;9(48):42210-42216. doi: 10.1021/acsami.7b14086. Epub 2017 Nov 17.
Most solid-state biosensor platforms require a specific immobilization chemistry and a bioconjugation strategy separately to tether sensory molecules to a substrate and attach specific receptors to the sensory unit, respectively. We developed a mussel-inspired universal conjugation method that enables both surface immobilization and bioconjugation at the same time. By incorporating dopamine or catechol moiety into self-signaling polydiacetylene (PDA) liposomes, we demonstrated efficient immobilization of the PDA liposomes to a wide range of substrates, without any substrate modification. Moreover, receptor molecules having a specificity toward a target molecule can also be attached to the immobilized PDA liposome layer without any chemical modification. We applied our mussel-inspired conjugation method to a droplet-array biosensor by exploiting the hydrophilic nature of PDA liposomes coated on a hydrophobic polytetrafluoroethylene surface and demonstrated selective and sensitive detection of vascular endothelial growth factor down to 10 nM.
大多数固态生物传感器平台需要特定的固定化化学和生物偶联策略,分别将传感分子固定在基质上,并将特定的受体连接到传感单元上。我们开发了一种受贻贝启发的通用偶联方法,可同时实现表面固定化和生物偶联。通过将多巴胺或儿茶酚部分掺入自信号聚二乙炔(PDA)脂质体中,我们证明了 PDA 脂质体可以高效地固定在广泛的基质上,而无需任何基质修饰。此外,对靶分子具有特异性的受体分子也可以连接到固定化的 PDA 脂质体层上,而无需任何化学修饰。我们通过利用涂覆在疏水性聚四氟乙烯表面上的 PDA 脂质体的亲水性,将贻贝启发的偶联方法应用于液滴阵列生物传感器,并证明了对血管内皮生长因子的选择性和灵敏检测,检测下限低至 10 nM。