Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA.
Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA.
Hum Mol Genet. 2018 Jan 1;27(1):160-177. doi: 10.1093/hmg/ddx397.
Mutations in coiled-coil-helix-coiled-coil-helix-domain containing 10 (CHCHD10), a mitochondrial twin CX9C protein whose function is still unknown, cause myopathy, motor neuron disease, frontotemporal dementia, and Parkinson's disease. Here, we investigate CHCHD10 topology and its protein interactome, as well as the effects of CHCHD10 depletion or expression of disease-associated mutations in wild-type cells. We find that CHCHD10 associates with membranes in the mitochondrial intermembrane space, where it interacts with a closely related protein, CHCHD2. Furthermore, both CHCHD10 and CHCHD2 interact with p32/GC1QR, a protein with various intra and extra-mitochondrial functions. CHCHD10 and CHCHD2 have short half-lives, suggesting regulatory rather than structural functions. Cell lines with CHCHD10 knockdown do not display bioenergetic defects, but, unexpectedly, accumulate excessive intramitochondrial iron. In mice, CHCHD10 is expressed in many tissues, most abundantly in heart, skeletal muscle, liver, and in specific CNS regions, notably the dopaminergic neurons of the substantia nigra and spinal cord neurons, which is consistent with the pathology associated with CHCHD10 mutations. Homozygote CHCHD10 knockout mice are viable, have no gross phenotypes, no bioenergetic defects or ultrastructural mitochondrial abnormalities in brain, heart or skeletal muscle, indicating that functional redundancy or compensatory mechanisms for CHCHD10 loss occur in vivo. Instead, cells expressing S59L or R15L mutant versions of CHCHD10, but not WT, have impaired mitochondrial energy metabolism. Taken together, the evidence obtained from our in vitro and in vivo studies suggest that CHCHD10 mutants cause disease through a gain of toxic function mechanism, rather than a loss of function.
卷曲螺旋-双环-卷曲螺旋-双环结构域蛋白 10(CHCHD10)中的突变可引起肌病、运动神经元病、额颞叶痴呆和帕金森病,CHCHD10 是一种线粒体双 CX9C 蛋白,其功能尚不清楚。在此,我们研究了 CHCHD10 的拓扑结构及其蛋白质相互作用组,以及在野生型细胞中 CHCHD10 缺失或表达相关疾病突变的影响。我们发现 CHCHD10 与线粒体膜间隙中的膜结合,在那里它与密切相关的蛋白 CHCHD2 相互作用。此外,CHCHD10 和 CHCHD2 均与 p32/GC1QR 相互作用,p32/GC1QR 是一种具有各种线粒体内外功能的蛋白质。CHCHD10 和 CHCHD2 的半衰期都很短,这表明它们具有调节功能而非结构功能。CHCHD10 敲低的细胞系没有表现出生物能量缺陷,但出乎意料的是,它们会积累过多的线粒体内部铁。在小鼠中,CHCHD10 在许多组织中表达,在心脏、骨骼肌、肝脏和特定的中枢神经系统区域(尤其是黑质的多巴胺能神经元和脊髓神经元)中表达最为丰富,这与 CHCHD10 突变相关的病理学一致。杂合子 CHCHD10 敲除小鼠是存活的,没有明显的表型,大脑、心脏或骨骼肌中没有生物能量缺陷或超微结构线粒体异常,这表明 CHCHD10 缺失在体内存在功能冗余或补偿机制。相反,表达 CHCHD10 S59L 或 R15L 突变体版本的细胞,但不是 WT 细胞,其线粒体能量代谢受损。总之,我们的体外和体内研究结果表明,CHCHD10 突变体通过获得毒性功能机制而不是丧失功能引起疾病。