Suppr超能文献

动脉粥样硬化在巨细胞动脉炎诊断中的潜在陷阱。

Atherosclerosis as a potential pitfall in the diagnosis of giant cell arteritis.

机构信息

Rheumatology Department, Hospital Universitario La Paz, Madrid, Spain.

Internal Medicine Department, Hospital Universitario La Paz, Madrid, Spain.

出版信息

Rheumatology (Oxford). 2018 Feb 1;57(2):318-321. doi: 10.1093/rheumatology/kex381.

Abstract

OBJECTIVES

To explore whether the increase in the intima-media thickness (IMT) in arteriosclerotic disease correlates with the increase in the IMT in temporal arteries (TAs) and if that could mimic the US GCA halo sign.

METHODS

Consecutive patients ⩾50 years old with high vascular risk and without signs or symptoms of GCA were included. The carotid US IMT measurements were obtained using a standardized software radiofrequency-tracking technology. Colour Doppler US and grey-scale measurements of the IMT in the branches of both TAs were performed by a second sonographer using a 22 MHz probe.

RESULTS

Forty patients were studied (28 men) with a mean age of 70.6 years. The carotid IMT exhibited significant correlation with the TA IMT. A carotid IMT >0.9 mm was associated with a temporal IMT >0.3 mm. Only one patient had an IMT >0.34 mm in two branches.

CONCLUSIONS

Atherosclerotic disease with a carotid IMT >0.9 mm increases the TA IMT and might mimic the halo sign. As atherosclerosis is common in this age group, we propose a cut-off of TA IMT >0.34 mm in at least two branches to minimize false positives in a GCA diagnosis.

摘要

目的

探讨动脉粥样硬化性疾病中内-中膜厚度(IMT)的增加是否与颞动脉(TA)中 IMT 的增加相关,以及这种增加是否可以模拟 US GCA 晕环征。

方法

连续纳入年龄 ⩾50 岁、血管风险较高且无 GCA 迹象或症状的患者。采用标准化软件射频跟踪技术进行颈动脉 US IMT 测量。由第二位使用 22 MHz 探头的超声医师进行彩色多普勒超声和双侧 TA 分支的 IMT 灰阶测量。

结果

共纳入 40 例患者(28 名男性),平均年龄为 70.6 岁。颈动脉 IMT 与 TA IMT 呈显著相关性。颈动脉 IMT >0.9mm 与颞动脉 IMT >0.3mm 相关。仅 1 例患者在两支 TA 中 IMT >0.34mm。

结论

颈动脉 IMT >0.9mm 的动脉粥样硬化性疾病会增加 TA IMT,可能会模拟晕环征。由于该年龄组中动脉粥样硬化较为常见,我们建议在至少两支 TA 中设定 TA IMT >0.34mm 的截断值,以最小化 GCA 诊断中的假阳性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验