Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, P. R. China.
Nanoscale. 2017 Nov 23;9(45):17814-17820. doi: 10.1039/c7nr05388f.
Thermionic electron emitters have recently been scaled down to the microscale using microfabrication technologies and graphene as the filament. While possessing several advantages over field emitters, graphene-based thermionic micro-emitters still exhibit low emission current density and efficiency. Here, we report nanoscale thermionic electron emitters (NTEEs) fabricated using microfabrication technologies and single-walled carbon nanotubes (SWCNTs), the thinnest conducting filament we can use. The SWCNT NTEEs exhibit an emission current density as high as 0.45 × 10 A cm, which is superior to that of traditional thermionic emitters and five orders of magnitude higher than that of graphene-based thermionic emitters. The emission characteristics of SWCNT NTEEs are found to strongly depend on the electrical properties of the SWCNTs, with metallic SWCNT NTEEs showing a substantially lower turn-on voltage and more reproducible emission performances than those based on semiconducting SWCNTs. Our results indicate that SWCNT NTEEs are promising for electron source applications.
热离子电子发射器最近已经使用微制造技术和石墨烯缩小到微尺度。虽然与场发射器相比具有多个优点,但基于石墨烯的热离子微发射器仍表现出低发射电流密度和效率。在这里,我们报告了使用微制造技术和单壁碳纳米管 (SWCNT) 制造的纳米级热离子电子发射器 (NTEE),这是我们可以使用的最薄的导电灯丝。SWCNT NTEE 的发射电流密度高达 0.45×10 A cm,优于传统热离子发射器,比基于石墨烯的热离子发射器高出五个数量级。发现 SWCNT NTEE 的发射特性强烈依赖于 SWCNT 的电特性,与基于半导体 SWCNT 的 NTEE 相比,金属 SWCNT NTEE 具有更低的开启电压和更可重复的发射性能。我们的结果表明,SWCNT NTEE 有望用于电子源应用。