Suppr超能文献

电荷影响疏水FG序列的底物识别和自组装。

Charge Influences Substrate Recognition and Self-Assembly of Hydrophobic FG Sequences.

作者信息

Chen Wesley G, Witten Jacob, Grindy Scott C, Holten-Andersen Niels, Ribbeck Katharina

机构信息

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Computational Systems Biology Initiative, Massachusetts Institute of Technology, Cambridge, Massachusetts.

出版信息

Biophys J. 2017 Nov 7;113(9):2088-2099. doi: 10.1016/j.bpj.2017.08.058.

Abstract

The nuclear pore complex controls the passage of molecules via hydrophobic phenylalanine-glycine (FG) domains on nucleoporins. Such FG domains consist of repeating units of FxFG, FG, or GLFG sequences, many of which are interspersed with highly charged amino acid sequences. Despite the high density of charge in certain FG domains, if and how charge influences FG-domain self-assembly and selective binding of nuclear transport receptors is largely unexplored. Using rationally designed short peptide sequences, we determined that the charge type and identity of amino acids surrounding FG sequences impact the structure and selectivity of FG-based gels. Moreover, we showed that spatial localization of the charged amino acids with respect to the FG sequence determines the degree to which charge influences hydrophobic interactions. Taken together, our study highlights that charge type and placement of amino acids regulate FG-sequence function and are important considerations when studying the mechanism of nuclear pore complex transport in vivo.

摘要

核孔复合体通过核孔蛋白上的疏水苯丙氨酸 - 甘氨酸(FG)结构域控制分子的通过。此类FG结构域由FxFG、FG或GLFG序列的重复单元组成,其中许多穿插着高度带电的氨基酸序列。尽管某些FG结构域电荷密度很高,但电荷如何影响FG结构域的自组装以及核转运受体的选择性结合在很大程度上仍未得到探索。我们使用合理设计的短肽序列确定,FG序列周围氨基酸的电荷类型和特性会影响基于FG的凝胶的结构和选择性。此外,我们表明带电氨基酸相对于FG序列的空间定位决定了电荷影响疏水相互作用的程度。综上所述,我们的研究强调氨基酸的电荷类型和位置调节FG序列的功能,并且在研究体内核孔复合体转运机制时是重要的考虑因素。

相似文献

1
Charge Influences Substrate Recognition and Self-Assembly of Hydrophobic FG Sequences.
Biophys J. 2017 Nov 7;113(9):2088-2099. doi: 10.1016/j.bpj.2017.08.058.
3
Nucleoporin's Like Charge Regions Are Major Regulators of FG Coverage and Dynamics Inside the Nuclear Pore Complex.
PLoS One. 2015 Dec 11;10(12):e0143745. doi: 10.1371/journal.pone.0143745. eCollection 2015.
4
Impact of distinct FG nucleoporin repeats on Nup98 self-association.
Nat Commun. 2024 May 7;15(1):3797. doi: 10.1038/s41467-024-48194-4.
5
Effect of charge, hydrophobicity, and sequence of nucleoporins on the translocation of model particles through the nuclear pore complex.
Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3363-8. doi: 10.1073/pnas.1212909110. Epub 2013 Feb 12.
6
Slide-and-exchange mechanism for rapid and selective transport through the nuclear pore complex.
Proc Natl Acad Sci U S A. 2016 May 3;113(18):E2489-97. doi: 10.1073/pnas.1522663113. Epub 2016 Apr 18.
7
The mechanism of nucleocytoplasmic transport through the nuclear pore complex.
Cold Spring Harb Symp Quant Biol. 2010;75:567-84. doi: 10.1101/sqb.2010.75.033. Epub 2011 Mar 29.
9
Natively Unfolded FG Repeats Stabilize the Structure of the Nuclear Pore Complex.
Cell. 2017 Nov 2;171(4):904-917.e19. doi: 10.1016/j.cell.2017.09.033. Epub 2017 Oct 12.
10
Nanocompartmentalization of the Nuclear Pore Lumen.
Biophys J. 2020 Jan 7;118(1):219-231. doi: 10.1016/j.bpj.2019.11.024. Epub 2019 Nov 26.

引用本文的文献

1
An introduction to dynamic nucleoporins in species: Novel targets for tropical-therapeutics.
J Parasit Dis. 2022 Dec;46(4):1176-1191. doi: 10.1007/s12639-022-01515-0. Epub 2022 Jul 25.
2
Physics of the Nuclear Pore Complex: Theory, Modeling and Experiment.
Phys Rep. 2021 Jul 25;921:1-53. doi: 10.1016/j.physrep.2021.03.003. Epub 2021 Mar 24.
3
Spatial configuration of charge and hydrophobicity tune particle transport through mucus.
Biophys J. 2022 Jan 18;121(2):277-287. doi: 10.1016/j.bpj.2021.12.018. Epub 2021 Dec 21.
5
Probing High Permeability of Nuclear Pore Complexes by Scanning Electrochemical Microscopy: Ca Effects on Transport Barriers.
Anal Chem. 2019 Apr 16;91(8):5446-5454. doi: 10.1021/acs.analchem.9b00796. Epub 2019 Apr 3.

本文引用的文献

3
Ionic interactions. Subnanoscale hydrophobic modulation of salt bridges in aqueous media.
Science. 2015 May 1;348(6234):555-9. doi: 10.1126/science.aaa7532.
5
Modulation of hydrophobic interactions by proximally immobilized ions.
Nature. 2015 Jan 15;517(7534):347-50. doi: 10.1038/nature14018.
6
Molecular interactions and residues involved in force generation in the T4 viral DNA packaging motor.
J Mol Biol. 2014 Dec 12;426(24):4002-4017. doi: 10.1016/j.jmb.2014.09.023. Epub 2014 Oct 13.
9
Nuclear pore complex protein sequences determine overall copolymer brush structure and function.
Biophys J. 2014 May 6;106(9):1997-2007. doi: 10.1016/j.bpj.2014.03.021.
10
Assembly of Nsp1 nucleoporins provides insight into nuclear pore complex gating.
PLoS Comput Biol. 2014 Mar 13;10(3):e1003488. doi: 10.1371/journal.pcbi.1003488. eCollection 2014 Mar.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验