Suppr超能文献

通过核孔复合体进行快速且选择性转运的滑动与交换机制。

Slide-and-exchange mechanism for rapid and selective transport through the nuclear pore complex.

作者信息

Raveh Barak, Karp Jerome M, Sparks Samuel, Dutta Kaushik, Rout Michael P, Sali Andrej, Cowburn David

机构信息

Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, CA 94143; Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA 94143; California Institute for Quantitative Biosciences, University of California at San Francisco, San Francisco, CA 94143;

Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461; Department of Physiology & Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461;

出版信息

Proc Natl Acad Sci U S A. 2016 May 3;113(18):E2489-97. doi: 10.1073/pnas.1522663113. Epub 2016 Apr 18.

Abstract

Nucleocytoplasmic transport is mediated by the interaction of transport factors (TFs) with disordered phenylalanine-glycine (FG) repeats that fill the central channel of the nuclear pore complex (NPC). However, the mechanism by which TFs rapidly diffuse through multiple FG repeats without compromising NPC selectivity is not yet fully understood. In this study, we build on our recent NMR investigations showing that FG repeats are highly dynamic, flexible, and rapidly exchanging among TF interaction sites. We use unbiased long timescale all-atom simulations on the Anton supercomputer, combined with extensive enhanced sampling simulations and NMR experiments, to characterize the thermodynamic and kinetic properties of FG repeats and their interaction with a model transport factor. Both the simulations and experimental data indicate that FG repeats are highly dynamic random coils, lack intrachain interactions, and exhibit significant entropically driven resistance to spatial confinement. We show that the FG motifs reversibly slide in and out of multiple TF interaction sites, transitioning rapidly between a strongly interacting state and a weakly interacting state, rather than undergoing a much slower transition between strongly interacting and completely noninteracting (unbound) states. In the weakly interacting state, FG motifs can be more easily displaced by other competing FG motifs, providing a simple mechanism for rapid exchange of TF/FG motif contacts during transport. This slide-and-exchange mechanism highlights the direct role of the disorder within FG repeats in nucleocytoplasmic transport, and resolves the apparent conflict between the selectivity and speed of transport.

摘要

核质运输是由运输因子(TFs)与填充核孔复合体(NPC)中央通道的无序苯丙氨酸 - 甘氨酸(FG)重复序列相互作用介导的。然而,TFs如何在不影响NPC选择性的情况下快速扩散通过多个FG重复序列的机制尚未完全了解。在本研究中,我们基于最近的核磁共振研究,该研究表明FG重复序列具有高度动态性、灵活性,并在TF相互作用位点之间快速交换。我们在Anton超级计算机上使用无偏的长时间全原子模拟,结合广泛的增强采样模拟和核磁共振实验,来表征FG重复序列的热力学和动力学性质及其与模型运输因子的相互作用。模拟和实验数据均表明,FG重复序列是高度动态的无规卷曲,缺乏链内相互作用,并且对空间限制表现出显著的熵驱动阻力。我们表明,FG基序可逆地滑入和滑出多个TF相互作用位点,在强相互作用状态和弱相互作用状态之间快速转变,而不是在强相互作用和完全非相互作用(未结合)状态之间经历慢得多的转变。在弱相互作用状态下,FG基序更容易被其他竞争性FG基序取代,这为运输过程中TF/FG基序接触的快速交换提供了一种简单机制。这种滑动 - 交换机制突出了FG重复序列中的无序在核质运输中的直接作用,并解决了运输选择性和速度之间的明显矛盾。

相似文献

1
Slide-and-exchange mechanism for rapid and selective transport through the nuclear pore complex.
Proc Natl Acad Sci U S A. 2016 May 3;113(18):E2489-97. doi: 10.1073/pnas.1522663113. Epub 2016 Apr 18.
3
Nucleoporin's Like Charge Regions Are Major Regulators of FG Coverage and Dynamics Inside the Nuclear Pore Complex.
PLoS One. 2015 Dec 11;10(12):e0143745. doi: 10.1371/journal.pone.0143745. eCollection 2015.
5
The mechanism of nucleocytoplasmic transport through the nuclear pore complex.
Cold Spring Harb Symp Quant Biol. 2010;75:567-84. doi: 10.1101/sqb.2010.75.033. Epub 2011 Mar 29.
6
A coarse-grained computational model of the nuclear pore complex predicts Phe-Gly nucleoporin dynamics.
J Gen Physiol. 2017 Oct 2;149(10):951-966. doi: 10.1085/jgp.201711769. Epub 2017 Sep 8.
7
Efficiency, selectivity, and robustness of nucleocytoplasmic transport.
PLoS Comput Biol. 2007 Jul;3(7):e125. doi: 10.1371/journal.pcbi.0030125.

引用本文的文献

1
Structure, function and assembly of nuclear pore complexes.
Nat Rev Mol Cell Biol. 2025 Sep 9. doi: 10.1038/s41580-025-00881-w.
2
The TEMPO integrator: accelerating molecular simulations by temporally multiscale force prediction.
Bioinform Adv. 2025 Jun 20;5(1):vbaf142. doi: 10.1093/bioadv/vbaf142. eCollection 2025.
3
Of condensates and coats - reciprocal regulation of clathrin assembly and the growth of protein networks.
bioRxiv. 2025 May 14:2025.05.13.653742. doi: 10.1101/2025.05.13.653742.
4
Deciphering the intrinsically disordered characteristics of the FG-Nups through the lens of polymer physics.
Nucleus. 2024 Dec;15(1):2399247. doi: 10.1080/19491034.2024.2399247. Epub 2024 Sep 16.
5
Kinetic cooperativity resolves bidirectional clogging within the nuclear pore complex.
Biophys J. 2024 May 7;123(9):1085-1097. doi: 10.1016/j.bpj.2024.03.027. Epub 2024 Apr 18.
6
Biomolecular dynamics in the 21st century.
Biochim Biophys Acta Gen Subj. 2024 Feb;1868(2):130534. doi: 10.1016/j.bbagen.2023.130534. Epub 2023 Dec 6.
7
Nuclear transport proteins: structure, function, and disease relevance.
Signal Transduct Target Ther. 2023 Nov 10;8(1):425. doi: 10.1038/s41392-023-01649-4.
8
Visualizing the disordered nuclear transport machinery in situ.
Nature. 2023 May;617(7959):162-169. doi: 10.1038/s41586-023-05990-0. Epub 2023 Apr 26.
9
Improving the hole picture: towards a consensus on the mechanism of nuclear transport.
Biochem Soc Trans. 2023 Apr 26;51(2):871-886. doi: 10.1042/BST20220494.

本文引用的文献

1
Molecular Dynamics Simulations of Intrinsically Disordered Proteins: Force Field Evaluation and Comparison with Experiment.
J Chem Theory Comput. 2015 Jul 14;11(7):3420-31. doi: 10.1021/ct501178z. Epub 2015 Jun 30.
2
A human interactome in three quantitative dimensions organized by stoichiometries and abundances.
Cell. 2015 Oct 22;163(3):712-23. doi: 10.1016/j.cell.2015.09.053.
3
Structural and Functional Characterization of CRM1-Nup214 Interactions Reveals Multiple FG-Binding Sites Involved in Nuclear Export.
Cell Rep. 2015 Oct 27;13(4):690-702. doi: 10.1016/j.celrep.2015.09.042. Epub 2015 Oct 17.
4
Plasticity of an ultrafast interaction between nucleoporins and nuclear transport receptors.
Cell. 2015 Oct 22;163(3):734-45. doi: 10.1016/j.cell.2015.09.047. Epub 2015 Oct 8.
6
Kirkwood-Buff Approach Rescues Overcollapse of a Disordered Protein in Canonical Protein Force Fields.
J Phys Chem B. 2015 Jun 25;119(25):7975-84. doi: 10.1021/acs.jpcb.5b03440. Epub 2015 Jun 15.
7
How does a flexible chain of active particles swell?
J Chem Phys. 2015 Mar 28;142(12):124905. doi: 10.1063/1.4916134.
8
Water dispersion interactions strongly influence simulated structural properties of disordered protein states.
J Phys Chem B. 2015 Apr 23;119(16):5113-23. doi: 10.1021/jp508971m. Epub 2015 Apr 13.
10
Size-dependent leak of soluble and membrane proteins through the yeast nuclear pore complex.
Mol Biol Cell. 2015 Apr 1;26(7):1386-94. doi: 10.1091/mbc.E14-07-1175. Epub 2015 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验