Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, USA.
Lab Chip. 2017 Dec 5;17(24):4312-4323. doi: 10.1039/c7lc01012e.
Cell-matrix and cell-cell interactions influence intracellular signalling and play an important role in physiologic and pathologic processes. Detachment of cells from the surrounding microenvironment alters intracellular signalling. Here, we demonstrate and characterise an integrated microfluidic device to culture single and clustered cells in tuneable microenvironments and then directly analyse the lysate of each cell in situ, thereby eliminating the need to detach cells prior to analysis. First, we utilise microcontact printing to pattern cells in confined geometries. We then utilise a microscale isoelectric focusing (IEF) module to separate, detect, and analyse lamin A/C from substrate-adhered cells seeded and cultured at varying (500, 2000, and 9000 cells per cm) densities. We report separation performance (minimum resolvable pI difference of 0.11) that is on par with capillary IEF and independent of cell density. Moreover, we map lamin A/C and β-tubulin protein expression to morphometric information (cell area, circumference, eccentricity, form factor, and cell area factor) of single cells and observe poor correlation with each of these parameters. By eliminating the need for cell detachment from substrates, we enhance detection of cell receptor proteins (CD44 and β-integrin) and dynamic phosphorylation events (pMLC) that are rendered undetectable or disrupted by enzymatic treatments. Finally, we optimise protein solubilisation and separation performance by tuning lysis and electrofocusing (EF) durations. We observe enhanced separation performance (decreased peak width) with longer EF durations by 25.1% and improved protein solubilisation with longer lysis durations. Overall, the combination of morphometric analyses of substrate-adhered cells, with minimised handling, will yield important insights into our understanding of adhesion-mediated signalling processes.
细胞-基质和细胞-细胞相互作用影响细胞内信号转导,并在生理和病理过程中发挥重要作用。细胞从周围微环境中脱离会改变细胞内信号转导。在这里,我们展示并描述了一种集成的微流控装置,用于在可调节的微环境中培养单个和簇状细胞,然后直接原位分析每个细胞的裂解物,从而消除了在分析之前必须使细胞脱离的需要。首先,我们利用微接触印刷将细胞图案化在受限的几何形状中。然后,我们利用微尺度等电聚焦(IEF)模块,从以不同密度(500、2000 和 9000 个细胞/平方厘米)接种和培养的贴壁细胞中分离、检测和分析核纤层蛋白 A/C。我们报告了分离性能(最小可分辨 pI 差为 0.11),与毛细管 IEF 相当且与细胞密度无关。此外,我们将核纤层蛋白 A/C 和 β-微管蛋白的蛋白表达与单个细胞的形态计量信息(细胞面积、周长、偏心率、形状因子和细胞面积因子)相关联,并观察到与这些参数中的每一个都没有良好的相关性。通过消除从基质上使细胞脱离的需要,我们增强了对细胞受体蛋白(CD44 和 β-整合素)和动态磷酸化事件(pMLC)的检测,这些蛋白或事件在经过酶处理后无法检测或被破坏。最后,我们通过调整裂解和电聚焦(EF)时间来优化蛋白质的溶解和分离性能。我们观察到随着 EF 时间的延长,分离性能(峰宽减小)提高了 25.1%,并且随着裂解时间的延长,蛋白质的溶解得到了改善。总的来说,结合对贴壁细胞的形态计量分析,以及最小化处理,将为我们理解黏附介导的信号转导过程提供重要的见解。