Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Cambridge, Massachusetts 02138, United States.
Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany.
Acc Chem Res. 2017 Nov 21;50(11):2822-2833. doi: 10.1021/acs.accounts.7b00413. Epub 2017 Nov 9.
Late-stage fluorination reactions aim to reduce the synthetic limitations of conventional organofluorine chemistry with respect to substrate scope and functional group tolerance. C-F bond formation is commonly thermodynamically favorable but almost universally associated with high kinetic barriers. Apart from PhenoFluor chemistry, most modern aromatic fluorination methods reported to date rely on the use of transition metal catalysts, with C-F bonds often formed through reductive elimination. Reductive elimination chemistry to make C-X bonds becomes increasingly challenging when moving to higher atomic numbers in the periodic table from C-C to C-F, in part because of higher metal-X bond dissociation energies. The formation of C-C, C-N, and C-O bonds via reductive elimination has become routine in the 20th century, but it took until the 21st century to develop complexes that could afford general C-F bond formation. The availability of such complexes enabled the substrate scope of modern fluorination chemistry to exceed that of conventional fluorination. PhenoFluor chemistry departs from conventional reaction mechanisms for aromatic fluorination chemistry. Instead, we have revealed a concerted nucleophilic aromatic substitution reaction (CSAr) for PhenoFluor that proceeds through a single neutral four-membered transition state. Conceptually, PhenoFluor chemistry is therefore distinct from conventional SAr chemistry, which typically proceeds through a two-barrier process with Meisenheimer complexes as reaction intermediates. As a consequence, PhenoFluor chemistry has a larger substrate scope than conventional SAr chemistry and can be performed on arenes as electron-rich as anilines. Moreover, PhenoFluor chemistry is tolerant of protic functional groups, which sets it apart from modern metal-mediated processes. Primary and secondary amines, alcohols, thiols, and phenols are often not tolerated under metal-catalyzed late-stage fluorination reactions because C-N and C-O reductive elimination can have lower activation barriers than C-F reductive elimination. The mechanism by which PhenoFluor chemistry forms C-F bonds not only rationalizes the substrate scope and functional group tolerance but also informs the side-product profile. Fluorinated isomers are not observed because the four-membered transition state necessitates ipso substitution. In addition, no reduced product, e.g., H instead of F incorporation, as is often observed with metal-mediated methods, has ever been observed with PhenoFluor. PhenoFluor chemistry can be used to deoxyfluorinate both phenols and alcohols. PhenoFluor is an expensive reagent that must be used stoichiometrically and therefore cannot replace cost-efficient methods to make simple fluorinated molecules on a large scale. However, PhenoFluor is often successful when other fluorination methods fail. The synthesis of F-labeled molecules for positron emission tomography (PET) is one application of modern fluorination chemistry for which material throughput is not an issue because of the small quantities of PET tracers used in imaging (typically nanomoles). The high emphasis on functional group tolerance, side-product profiles, and reliability combined with less stringent cost requirements render PhenoFluor-based deoxyfluorination with F promising for human PET imaging.
晚期氟化反应旨在减少传统有机氟化学在底物范围和官能团耐受性方面的合成限制。C-F 键的形成通常在热力学上是有利的,但几乎普遍与高动力学障碍相关。除 PhenoFluor 化学外,迄今为止报道的大多数现代芳香族氟化方法都依赖于过渡金属催化剂的使用,其中 C-F 键通常通过还原消除形成。当从 C-C 移动到 C-F 时,原子序数更高,C-X 键的形成变得越来越具有挑战性,部分原因是金属-X 键离解能更高。通过还原消除形成 C-C、C-N 和 C-O 键在 20 世纪已经成为常规,但直到 21 世纪才开发出能够形成通用 C-F 键的配合物。通过还原消除形成 C-C、C-N 和 C-O 键在 20 世纪已经成为常规,但直到 21 世纪才开发出能够形成通用 C-F 键的配合物。通过还原消除形成 C-C、C-N 和 C-O 键在 20 世纪已经成为常规,但直到 21 世纪才开发出能够形成通用 C-F 键的配合物。通过还原消除形成 C-C、C-N 和 C-O 键在 20 世纪已经成为常规,但直到 21 世纪才开发出能够形成通用 C-F 键的配合物。这种配合物的可用性使现代氟化化学的底物范围超过了传统氟化。PhenoFluor 化学与传统的芳香族氟化化学的反应机制不同。相反,我们已经揭示了 PhenoFluor 的协同亲核芳香取代反应 (CSAr),它通过单一的中性四元过渡态进行。从概念上讲,因此,PhenoFluor 化学与传统的 SAr 化学不同,后者通常通过具有 Meisenheimer 配合物作为反应中间体的两个障碍过程进行。因此,PhenoFluor 化学具有比传统 SAr 化学更大的底物范围,并且可以在与苯胺一样富电子的芳烃上进行。此外,PhenoFluor 化学对质子官能团具有耐受性,这使其有别于现代金属介导的过程。在金属催化的晚期氟化反应中,伯胺、仲胺、醇、硫醇和酚通常不被容忍,因为 C-N 和 C-O 还原消除的活化能可能低于 C-F 还原消除的活化能。PhenoFluor 化学形成 C-F 键的机制不仅解释了底物范围和官能团耐受性,而且还说明了副产物谱。没有观察到氟化异构体,因为四元过渡态需要 ipso 取代。此外,从未观察到金属介导方法中经常观察到的 C-F 还原消除的较低活化能的还原产物,例如 H 而不是 F 掺入。PhenoFluor 化学可用于脱氟化酚和醇。PhenoFluor 是一种昂贵的试剂,必须以化学计量使用,因此不能替代成本效益高的方法,无法在大规模上制造简单的氟化分子。然而,当其他氟化方法失败时,PhenoFluor 通常很成功。用于正电子发射断层扫描 (PET) 的 F 标记分子的合成是现代氟化化学的一个应用,由于用于成像的 PET 示踪剂的数量很少(通常为纳摩尔),因此材料通量不是问题。对功能基团耐受性、副产物谱和可靠性的高度重视,以及对成本要求的放宽,使得基于 PhenoFluor 的脱氟与 F 对人类 PET 成像很有前途。