Suppr超能文献

红外丘脑皮质刺激的表征与闭环控制产生空间受限的单单元反应。

Characterization and closed-loop control of infrared thalamocortical stimulation produces spatially constrained single-unit responses.

作者信息

Coventry Brandon S, Lawlor Georgia L, Bagnati Christina B, Krogmeier Claudia, Bartlett Edward L

机构信息

Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.

Center for Implantable Devices and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA.

出版信息

PNAS Nexus. 2024 Feb 22;3(2):pgae082. doi: 10.1093/pnasnexus/pgae082. eCollection 2024 Feb.

Abstract

Deep brain stimulation (DBS) is a powerful tool for the treatment of circuitopathy-related neurological and psychiatric diseases and disorders such as Parkinson's disease and obsessive-compulsive disorder, as well as a critical research tool for perturbing neural circuits and exploring neuroprostheses. Electrically mediated DBS, however, is limited by the spread of stimulus currents into tissue unrelated to disease course and treatment, potentially causing undesirable patient side effects. In this work, we utilize infrared neural stimulation (INS), an optical neuromodulation technique that uses near to midinfrared light to drive graded excitatory and inhibitory responses in nerves and neurons, to facilitate an optical and spatially constrained DBS paradigm. INS has been shown to provide spatially constrained responses in cortical neurons and, unlike other optical techniques, does not require genetic modification of the neural target. We show that INS produces graded, biophysically relevant single-unit responses with robust information transfer in rat thalamocortical circuits. Importantly, we show that cortical spread of activation from thalamic INS produces more spatially constrained response profiles than conventional electrical stimulation. Owing to observed spatial precision of INS, we used deep reinforcement learning (RL) for closed-loop control of thalamocortical circuits, creating real-time representations of stimulus-response dynamics while driving cortical neurons to precise firing patterns. Our data suggest that INS can serve as a targeted and dynamic stimulation paradigm for both open and closed-loop DBS.

摘要

深部脑刺激(DBS)是治疗与回路病相关的神经和精神疾病及障碍(如帕金森病和强迫症)的有力工具,也是干扰神经回路和探索神经假体的关键研究工具。然而,电介导的DBS受到刺激电流扩散到与疾病进程和治疗无关的组织中的限制,可能会导致不良的患者副作用。在这项工作中,我们利用红外神经刺激(INS),一种光学神经调节技术,它使用近红外到中红外光来驱动神经和神经元中的分级兴奋性和抑制性反应,以促进光学和空间受限的DBS范式。INS已被证明能在皮质神经元中提供空间受限的反应,并且与其他光学技术不同,它不需要对神经靶点进行基因改造。我们表明,INS在大鼠丘脑皮质回路中产生分级的、具有强大信息传递的生物物理相关单单元反应。重要的是,我们表明,与传统电刺激相比,丘脑INS激活在皮质的扩散产生了更具空间受限性的反应分布。由于观察到INS的空间精度,我们使用深度强化学习(RL)对丘脑皮质回路进行闭环控制,在驱动皮质神经元达到精确放电模式的同时,创建刺激-反应动力学的实时表示。我们的数据表明,INS可以作为开环和闭环DBS的靶向和动态刺激范式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7e5/11079674/b8599c56e382/pgae082f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验