Suppr超能文献

NeuroSeg:用于体内双光子 Ca 成像数据的自动细胞检测和分割。

NeuroSeg: automated cell detection and segmentation for in vivo two-photon Ca imaging data.

机构信息

Brain Research Center, Third Military Medical University, Chongqing, 400038, China.

School of Life Sciences, Peking University, Beijing, 100871, China.

出版信息

Brain Struct Funct. 2018 Jan;223(1):519-533. doi: 10.1007/s00429-017-1545-5. Epub 2017 Nov 9.

Abstract

Two-photon Ca imaging has become a popular approach for monitoring neuronal population activity with cellular or subcellular resolution in vivo. This approach allows for the recording of hundreds to thousands of neurons per animal and thus leads to a large amount of data to be processed. In particular, manually drawing regions of interest is the most time-consuming aspect of data analysis. However, the development of automated image analysis pipelines, which will be essential for dealing with the likely future deluge of imaging data, remains a major challenge. To address this issue, we developed NeuroSeg, an open-source MATLAB program that can facilitate the accurate and efficient segmentation of neurons in two-photon Ca imaging data. We proposed an approach using a generalized Laplacian of Gaussian filter to detect cells and weighting-based segmentation to separate individual cells from the background. We tested this approach on an in vivo two-photon Ca imaging dataset obtained from mouse cortical neurons with differently sized view fields. We show that this approach exhibits superior performance for cell detection and segmentation compared with the existing published tools. In addition, we integrated the previously reported, activity-based segmentation into our approach and found that this combined method was even more promising. The NeuroSeg software, including source code and graphical user interface, is freely available and will be a useful tool for in vivo brain activity mapping.

摘要

双光子 Ca 成像已成为一种流行的方法,可以在体内以细胞或亚细胞分辨率监测神经元群体活动。这种方法允许在每个动物中记录数百到数千个神经元,因此会产生大量需要处理的数据。特别是,手动绘制感兴趣区域是数据分析中最耗时的方面。然而,开发自动化图像分析管道对于处理未来可能出现的成像数据洪流仍然是一个重大挑战。为了解决这个问题,我们开发了 NeuroSeg,这是一个开源的 MATLAB 程序,可以方便地对双光子 Ca 成像数据中的神经元进行准确高效的分割。我们提出了一种使用广义高斯拉普拉斯滤波器检测细胞和基于权重的分割来将单个细胞与背景分离的方法。我们在来自具有不同视场的小鼠皮质神经元的体内双光子 Ca 成像数据集上测试了这种方法。我们表明,与现有的已发表工具相比,这种方法在细胞检测和分割方面表现出更好的性能。此外,我们将之前报道的基于活动的分割集成到我们的方法中,并发现这种组合方法更有前途。NeuroSeg 软件,包括源代码和图形用户界面,是免费提供的,将成为体内大脑活动映射的有用工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验