a Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET) , Tucumán , Argentina.
b Facultad de Ciencias Naturales e Instituto Miguel Lillo , Universidad Nacional de Tucumán , Tucumán , Argentina.
Crit Rev Biotechnol. 2018 Aug;38(5):719-728. doi: 10.1080/07388551.2017.1398133. Epub 2017 Nov 10.
Actinobacteria are well-known degraders of toxic materials that have the ability to tolerate and remove organochloride pesticides; thus, they are used for bioremediation. The biodegradation of organochlorines by actinobacteria has been demonstrated in pure and mixed cultures with the concomitant production of metabolic intermediates including γ-pentachlorocyclohexene (γ-PCCH); 1,3,4,6-tetrachloro-1,4-cyclohexadiene (1,4-TCDN); 1,2-dichlorobenzene (1,2-DCB), 1,3-dichlorobenzene (1,3-DCB), or 1,4-dichlorobenzene (1,4-DCB); 1,2,3-trichlorobenzene (1,2,3-TCB), 1,2,4-trichlorobenzene (1,2,4-TCB), or 1,3,5-trichlorobenzene (1,3,5-TCB); 1,3-DCB; and 1,2-DCB. Chromatography coupled to mass spectrometric detection, especially GC-MS, is typically used to determine HCH-isomer metabolites. The important enzymes involved in HCH isomer degradation metabolic pathways include hexachlorocyclohexane dehydrochlorinase (LinA), haloalkane dehalogenase (LinB), and alcohol dehydrogenase (LinC). The metabolic versatility of these enzymes is known. Advances have been made in the identification of actinobacterial haloalkane dehydrogenase, which is encoded by linB. This knowledge will permit future improvements in biodegradation processes using Actinobacteria. The enzymatic and genetic characterizations of the molecular mechanisms involved in these processes have not been fully elucidated, necessitating further studies. New advances in this area suggest promising results. The scope of this paper encompasses the following: (i) the aerobic degradation pathways of hexachlorocyclohexane (HCH) isomers; (ii) the important genes and enzymes involved in the metabolic pathways of HCH isomer degradation; and (iii) the identification and quantification of intermediate metabolites through gas chromatography coupled to mass spectrometry (GC-MS).
放线菌是众所周知的有毒物质降解者,具有耐受和去除有机氯农药的能力;因此,它们被用于生物修复。在纯培养和混合培养中,放线菌对有机氯的生物降解已得到证实,同时产生包括γ-五氯环已烯(γ-PCCH);1,3,4,6-四氯-1,4-环己二烯(1,4-TCDN);1,2-二氯苯(1,2-DCB);1,3-二氯苯(1,3-DCB);或 1,4-二氯苯(1,4-DCB);1,2,3-三氯苯(1,2,3-TCB);1,2,4-三氯苯(1,2,4-TCB);或 1,3,5-三氯苯(1,3,5-TCB);1,3-DCB;和 1,2-DCB。色谱法与质谱检测相结合,特别是 GC-MS,通常用于测定 HCH 异构体代谢物。参与 HCH 异构体降解代谢途径的重要酶包括六氯环己烷脱氢氯酶(LinA)、卤代烷脱卤酶(LinB)和醇脱氢酶(LinC)。这些酶的代谢多功能性是已知的。在鉴定放线菌卤代烷脱氢酶方面取得了进展,该酶由 linB 编码。这一知识将允许未来使用放线菌改进生物降解过程。这些过程中涉及的分子机制的酶学和遗传学特征尚未完全阐明,需要进一步研究。该领域的新进展表明有希望的结果。本文的范围包括以下内容:(i)六氯环己烷(HCH)异构体的需氧降解途径;(ii)HCH 异构体降解代谢途径中涉及的重要基因和酶;以及(iii)通过气相色谱法与质谱法(GC-MS)鉴定和定量中间代谢物。