Suppr超能文献

基于神经形态嗅觉方法的麦芽高精度分类应用。

Application of Neuromorphic Olfactory Approach for High-Accuracy Classification of Malts.

机构信息

Brainchip Research Institute, Perth 6000, Australia.

School of Engineering, Edith Cowan University, Joondalup 6027, Australia.

出版信息

Sensors (Basel). 2022 Jan 7;22(2):440. doi: 10.3390/s22020440.

Abstract

Current developments in artificial olfactory systems, also known as electronic nose (e-nose) systems, have benefited from advanced machine learning techniques that have significantly improved the conditioning and processing of multivariate feature-rich sensor data. These advancements are complemented by the application of bioinspired algorithms and architectures based on findings from neurophysiological studies focusing on the biological olfactory pathway. The application of spiking neural networks (SNNs), and concepts from neuromorphic engineering in general, are one of the key factors that has led to the design and development of efficient bioinspired e-nose systems. However, only a limited number of studies have focused on deploying these models on a natively event-driven hardware platform that exploits the benefits of neuromorphic implementation, such as ultra-low-power consumption and real-time processing, for simplified integration in a portable e-nose system. In this paper, we extend our previously reported neuromorphic encoding and classification approach to a real-world dataset that consists of sensor responses from a commercial e-nose system when exposed to eight different types of malts. We show that the proposed SNN-based classifier was able to deliver 97% accurate classification results at a maximum latency of 0.4 ms per inference with a power consumption of less than 1 mW when deployed on neuromorphic hardware. One of the key advantages of the proposed neuromorphic architecture is that the entire functionality, including pre-processing, event encoding, and classification, can be mapped on the neuromorphic system-on-a-chip (NSoC) to develop power-efficient and highly-accurate real-time e-nose systems.

摘要

当前,人工嗅觉系统(也称为电子鼻(e-nose)系统)的发展得益于先进的机器学习技术,这些技术极大地改善了多元特征丰富传感器数据的调节和处理。这些进展得到了基于神经生理学研究中对生物嗅觉途径的发现的生物启发算法和架构的应用的补充。应用尖峰神经网络(SNN),以及神经形态工程中的一般概念,是导致设计和开发高效的生物启发型电子鼻系统的关键因素之一。然而,只有少数研究专注于在利用神经形态实现的超低功耗和实时处理等优势的本地事件驱动硬件平台上部署这些模型,以简化在便携式电子鼻系统中的集成。在本文中,我们将我们之前报告的神经形态编码和分类方法扩展到一个真实世界的数据集,该数据集由商业电子鼻系统在暴露于八种不同类型麦芽时的传感器响应组成。我们表明,所提出的基于 SNN 的分类器能够在神经形态硬件上部署时以每推理 0.4 毫秒的最大延迟提供 97%的准确分类结果,功耗小于 1mW。所提出的神经形态架构的一个关键优势是,整个功能,包括预处理、事件编码和分类,都可以映射到神经形态系统级芯片(NSoC)上,以开发节能且高度准确的实时电子鼻系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ce2/8778084/3e64625a3918/sensors-22-00440-g001.jpg

相似文献

1
Application of Neuromorphic Olfactory Approach for High-Accuracy Classification of Malts.
Sensors (Basel). 2022 Jan 7;22(2):440. doi: 10.3390/s22020440.
2
Real-Time Classification of Multivariate Olfaction Data Using Spiking Neural Networks.
Sensors (Basel). 2019 Apr 18;19(8):1841. doi: 10.3390/s19081841.
4
Artificial Olfactory Neuron for an In-Sensor Neuromorphic Nose.
Adv Sci (Weinh). 2022 Jun;9(18):e2106017. doi: 10.1002/advs.202106017. Epub 2022 Apr 15.
5
Application of a Brain-Inspired Spiking Neural Network Architecture to Odor Data Classification.
Sensors (Basel). 2020 May 12;20(10):2756. doi: 10.3390/s20102756.
6
Neuromorphic Sentiment Analysis Using Spiking Neural Networks.
Sensors (Basel). 2023 Sep 6;23(18):7701. doi: 10.3390/s23187701.
7
Advancements in Algorithms and Neuromorphic Hardware for Spiking Neural Networks.
Neural Comput. 2022 May 19;34(6):1289-1328. doi: 10.1162/neco_a_01499.
8
An Investigation into Spike-Based Neuromorphic Approaches for Artificial Olfactory Systems.
Sensors (Basel). 2017 Nov 10;17(11):2591. doi: 10.3390/s17112591.
9
Design Space Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence.
Neural Netw. 2020 Jan;121:366-386. doi: 10.1016/j.neunet.2019.09.024. Epub 2019 Sep 26.
10
Hand-Gesture Recognition Based on EMG and Event-Based Camera Sensor Fusion: A Benchmark in Neuromorphic Computing.
Front Neurosci. 2020 Aug 5;14:637. doi: 10.3389/fnins.2020.00637. eCollection 2020.

本文引用的文献

1
Rapid online learning and robust recall in a neuromorphic olfactory circuit.
Nat Mach Intell. 2020 Mar;2(3):181-191. doi: 10.1038/s42256-020-0159-4. Epub 2020 Mar 16.
2
Implementation of biohybrid olfactory bulb on a high-density CMOS-chip to reveal large-scale spatiotemporal circuit information.
Biosens Bioelectron. 2022 Feb 15;198:113834. doi: 10.1016/j.bios.2021.113834. Epub 2021 Nov 24.
3
Event-Based Sensing and Signal Processing in the Visual, Auditory, and Olfactory Domain: A Review.
Front Neural Circuits. 2021 May 31;15:610446. doi: 10.3389/fncir.2021.610446. eCollection 2021.
4
Application of a Brain-Inspired Spiking Neural Network Architecture to Odor Data Classification.
Sensors (Basel). 2020 May 12;20(10):2756. doi: 10.3390/s20102756.
6
Real-Time Classification of Multivariate Olfaction Data Using Spiking Neural Networks.
Sensors (Basel). 2019 Apr 18;19(8):1841. doi: 10.3390/s19081841.
7
Selection and Optimization of Temporal Spike Encoding Methods for Spiking Neural Networks.
IEEE Trans Neural Netw Learn Syst. 2020 Feb;31(2):358-370. doi: 10.1109/TNNLS.2019.2906158. Epub 2019 Apr 12.
8
An unsupervised neuromorphic clustering algorithm.
Biol Cybern. 2019 Aug;113(4):423-437. doi: 10.1007/s00422-019-00797-7. Epub 2019 Apr 3.
9
On Practical Issues for Stochastic STDP Hardware With 1-bit Synaptic Weights.
Front Neurosci. 2018 Oct 15;12:665. doi: 10.3389/fnins.2018.00665. eCollection 2018.
10
A Scalable Multicore Architecture With Heterogeneous Memory Structures for Dynamic Neuromorphic Asynchronous Processors (DYNAPs).
IEEE Trans Biomed Circuits Syst. 2018 Feb;12(1):106-122. doi: 10.1109/TBCAS.2017.2759700.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验