Suppr超能文献

比较物种分选和扩散限制在塑造海洋细菌和原生动物群落中的相对重要性。

Contrasting the relative importance of species sorting and dispersal limitation in shaping marine bacterial versus protist communities.

机构信息

Institute of Oceanography, National Taiwan University, Taipei, Taiwan.

Biology Department and Ocean Networks Canada, University of Victoria, Victoria, British Columbia, Canada.

出版信息

ISME J. 2018 Feb;12(2):485-494. doi: 10.1038/ismej.2017.183. Epub 2017 Nov 10.

Abstract

A central challenge in microbial ecology is to understand the underlying mechanisms driving community assembly, particularly in the continuum of species sorting and dispersal limitation. However, little is known about the relative importance of species sorting and dispersal limitation in shaping marine microbial communities; especially, how they are related to organism types/traits and water depth. Here, we used variation partitioning and null model analysis to compare mechanisms driving bacterial and protist metacommunity dynamics at the basin scale in the East China Sea, based on MiSeq paired-end sequencing of 16S ribosomal DNA (rDNA) and 18S rDNA, respectively, in surface, deep chlorophyll maximum and bottom layers. Our analyses indicated that protist communities were governed more strongly by species sorting relative to dispersal limitation than were bacterial communities; this pattern was consistent across the three-depth layers, albeit to different degrees. Furthermore, we detected that bacteria exhibited wider habitat niche breadths than protists, whereas, passive dispersal abilities were not appreciably different between them. Our findings support the 'size-plasticity' hypothesis: smaller organisms (bacteria) are less environment filtered than larger organisms (protists), as smaller organisms are more likely to be plastic in metabolic abilities and have greater environmental tolerance.

摘要

微生物生态学的一个核心挑战是理解驱动群落组装的潜在机制,特别是在物种分选和扩散限制的连续体中。然而,对于物种分选和扩散限制在塑造海洋微生物群落中的相对重要性,人们知之甚少;特别是,它们与生物类型/特征和水深有何关系。在这里,我们使用变异划分和零模型分析,分别基于东海表层、深层叶绿素最大值和底层中 16S 核糖体 DNA(rDNA)和 18S rDNA 的 MiSeq 配对末端测序,比较了在盆地尺度上驱动细菌和原生动物后生动物群落动态的机制。我们的分析表明,与扩散限制相比,原生动物群落受物种分选的影响更大,而细菌群落则受扩散限制的影响更大;这种模式在三个深度层中是一致的,尽管程度不同。此外,我们检测到细菌表现出比原生动物更宽的栖息地生态位宽度,而它们之间的被动扩散能力没有明显差异。我们的研究结果支持“大小可塑性”假说:较小的生物体(细菌)比较大的生物体(原生动物)受到的环境过滤作用更小,因为较小的生物体在代谢能力上更具可塑性,并且具有更大的环境耐受性。

相似文献

4
Protist diversity and community assembly in surface sediments of the South China Sea.
Microbiologyopen. 2019 Oct;8(10):e891. doi: 10.1002/mbo3.891. Epub 2019 Jun 19.
5
Contrasting Community Assembly Mechanisms Underlie Similar Biogeographic Patterns of Surface Microbiota in the Tropical North Pacific Ocean.
Microbiol Spectr. 2022 Feb 23;10(1):e0079821. doi: 10.1128/spectrum.00798-21. Epub 2022 Jan 12.
9
Response of protist community dynamics and co-occurrence patterns to the construction of artificial reefs: A case study in Daya Bay, China.
Sci Total Environ. 2020 Nov 10;742:140575. doi: 10.1016/j.scitotenv.2020.140575. Epub 2020 Jun 27.

引用本文的文献

1
Distribution patterns and driving mechanisms of ciliate communities from continental shelf to deep basin of the Northeastern South China Sea.
J Plankton Res. 2025 Aug 12;47(5):fbaf020. doi: 10.1093/plankt/fbaf020. eCollection 2025 Sep-Oct.
2
Diversity and interdomain networks of bacterial, pico-protist and nano-protist communities in a marine ranching.
Front Microbiol. 2025 Jul 17;16:1620645. doi: 10.3389/fmicb.2025.1620645. eCollection 2025.
3
Distinct strategies of soil bacterial generalists and specialists in temperate deciduous broad-leaved forests.
Appl Environ Microbiol. 2025 Aug 20;91(8):e0099225. doi: 10.1128/aem.00992-25. Epub 2025 Jul 30.
5
Harnessing the phyllosphere microbiota of wild foxtail millet for designing beneficial cross-kingdom synthetic communities.
ISME Commun. 2025 May 3;5(1):ycaf066. doi: 10.1093/ismeco/ycaf066. eCollection 2025 Jan.
6
Functional Diversity of Wintering Waterbird Enhanced by Restored Wetland in the Lakeshore of Chaohu Lake.
Ecol Evol. 2025 Jul 7;15(7):e71751. doi: 10.1002/ece3.71751. eCollection 2025 Jul.
10
Unveiling the ecological processes driving soil and lichen microbiome assembly along an urbanization gradient.
NPJ Biofilms Microbiomes. 2025 Jun 10;11(1):99. doi: 10.1038/s41522-025-00736-4.

本文引用的文献

1
Marine Protists Are Not Just Big Bacteria.
Curr Biol. 2017 Jun 5;27(11):R541-R549. doi: 10.1016/j.cub.2017.03.075.
2
3
Predators regulate prey species sorting and spatial distribution in microbial landscapes.
J Anim Ecol. 2017 May;86(3):501-510. doi: 10.1111/1365-2656.12639. Epub 2017 Feb 22.
5
Bacterial metacommunity organization in a highly connected aquatic system.
FEMS Microbiol Ecol. 2017 Apr 1;93(4). doi: 10.1093/femsec/fiw225.
6
Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment.
ISME J. 2016 Apr;10(4):885-96. doi: 10.1038/ismej.2015.164. Epub 2015 Sep 22.
7
Growth Rates of Microbes in the Oceans.
Ann Rev Mar Sci. 2016;8:285-309. doi: 10.1146/annurev-marine-122414-033938. Epub 2015 Jul 17.
8
Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean.
Science. 2015 May 22;348(6237):1261605. doi: 10.1126/science.1261605.
9
Ocean plankton. Structure and function of the global ocean microbiome.
Science. 2015 May 22;348(6237):1261359. doi: 10.1126/science.1261359.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验