Department of chemistry, Brandeis University, 415 South St, Waltham, MA, 02454, USA.
Department of Biology, Brandeis University, 415 South St, Waltham, MA, 02454, USA.
Angew Chem Int Ed Engl. 2017 Dec 18;56(51):16297-16301. doi: 10.1002/anie.201710269. Epub 2017 Nov 22.
Higher-order assemblies of proteins, with a structural and dynamic continuum, is an important concept in biology, but these insights have yet to be applied in designing biomaterials. Dynamic assemblies of supramolecular phosphoglycopeptides (sPGPs) transform a 2D cell sheet into 3D cell spheroids. A ligand-receptor interaction between a glycopeptide and a phosphopeptide produces sPGPs that form nanoparticles, which transform into nanofibrils upon partial enzymatic dephosphorylation. The assemblies form dynamically and hierarchically in situ on the cell surface, and interact with the extracellular matrix molecules and effectively abolish contact inhibition of locomotion (CIL) of the cells. Integrating molecular recognition, catalysis, and assembly, these active assemblies act as a dynamic continuum to disrupt CIL, thus illustrating a new kind of biomaterial for regulating cell behavior.
蛋白质的高级组装体具有结构和动态的连续性,这是生物学中的一个重要概念,但这些见解尚未应用于设计生物材料中。超分子磷酸糖肽(sPGP)的动态组装将二维细胞片层转化为三维细胞球体。糖肽和磷酸肽之间的配体-受体相互作用产生 sPGP,其形成纳米颗粒,在部分酶去磷酸化后转化为纳米纤维。组装体在细胞表面原位动态和分级形成,并与细胞外基质分子相互作用,有效地消除细胞的接触抑制(CIL)。这些活性组装体整合分子识别、催化和组装,形成一个动态的连续体来破坏 CIL,从而展示了一种用于调节细胞行为的新型生物材料。