Suppr超能文献

短肽的酶促自组装用于细胞球体的形成。

Enzymatic self-assembly of short peptides for cell spheroid formation.

机构信息

Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA.

出版信息

J Mater Chem B. 2024 Nov 6;12(43):11210-11217. doi: 10.1039/d4tb01154f.

Abstract

Cell spheroids, including organoids, serve as a valuable link between systems and animal models, offering powerful tools for studying cell biology in a three-dimensional environment. However, existing methods for generating cell spheroids are time consuming or difficult to scale up for large-scale production. Our recent study has revealed that transcytotic peptide assemblies, which transform from nanoparticles to nanofibers by enzymatic reactions, can create an intercellular fibril/gel, accelerating cell spheroid formation from a 2D cell culture or a cell suspension. While this finding presents an alternative approach for generating cell spheroids, the specific structural features required for efficient cell spheroid formation remain unclear. Based on our observation that a phosphotetrapeptide with a biphenyl cap at its N-terminus enables cell spheroid formation, we produced 10 variants of the original peptide. The variants explored modifications to the peptide backbone, length, electronic properties of the biphenyl capping group, and the type of phosphorylated amino acid residue. We then evaluated their ability for inducing cell spheroid formation. Our analysis revealed that, among the tested molecules, peptides with C-terminal phosphotyrosine, low critical micelle concentration, and dephosphorylation-guided nanoparticle to nanofiber morphological transition were the most effective in inducing the formation of cell spheroids. This work represents the first example to correlate the thermodynamic properties (, self-assembling ability) and kinetic behavior (, enzymatic dephosphorylation) of peptides with the efficacy of controlling intercellular interaction, thus offering valuable insights into using enzymatic self-assembly to generate peptide assemblies for biological applications.

摘要

细胞球状体,包括类器官,作为系统和动物模型之间的有价值的桥梁,为在三维环境中研究细胞生物学提供了强大的工具。然而,现有的生成细胞球状体的方法耗时或难以大规模生产。我们最近的研究表明,通过酶反应从纳米颗粒转变为纳米纤维的转胞肽组装可以在 2D 细胞培养或细胞悬浮液中加速细胞球状体的形成。虽然这一发现提供了一种生成细胞球状体的替代方法,但对于有效形成细胞球状体所需的特定结构特征仍不清楚。基于我们观察到具有双苯帽的 N 端四肽磷酸四肽能够形成细胞球状体,我们生产了 10 种原始肽的变体。这些变体探索了肽主链、长度、双苯帽基团的电子性质以及磷酸化氨基酸残基的类型的修饰。然后,我们评估了它们诱导细胞球状体形成的能力。我们的分析表明,在测试的分子中,带有 C 端磷酸酪氨酸、低临界胶束浓度和去磷酸化引导的纳米颗粒到纳米纤维形态转变的肽在诱导细胞球状体形成方面最有效。这项工作首次将肽的热力学性质(自组装能力)和动力学行为(酶去磷酸化)与控制细胞间相互作用的功效相关联,从而为利用酶自组装生成用于生物应用的肽组装体提供了有价值的见解。

相似文献

2
Self-Assembling Peptide Gels for 3D Prostate Cancer Spheroid Culture.用于 3D 前列腺癌球体培养的自组装肽凝胶。
Macromol Biosci. 2019 Jan;19(1):e1800249. doi: 10.1002/mabi.201800249. Epub 2018 Oct 15.
3
Cell spheroid creation by transcytotic intercellular gelation.通过跨细胞凝胶化作用形成细胞球体。
Nat Nanotechnol. 2023 Sep;18(9):1094-1104. doi: 10.1038/s41565-023-01401-7. Epub 2023 May 22.
9
Three dimensional spheroid cell culture for nanoparticle safety testing.用于纳米颗粒安全性测试的三维球体细胞培养
J Biotechnol. 2015 Jul 10;205:120-9. doi: 10.1016/j.jbiotec.2015.01.001. Epub 2015 Jan 14.

本文引用的文献

1
Synthesizing biomaterials in living organisms.在生物体内合成生物材料。
Chem Soc Rev. 2023 Nov 27;52(23):8126-8164. doi: 10.1039/d2cs00999d.
3
Cell spheroid creation by transcytotic intercellular gelation.通过跨细胞凝胶化作用形成细胞球体。
Nat Nanotechnol. 2023 Sep;18(9):1094-1104. doi: 10.1038/s41565-023-01401-7. Epub 2023 May 22.
5
Intranuclear Nanoribbons for Selective Killing of Osteosarcoma Cells.核内纳米带用于选择性杀伤骨肉瘤细胞。
Angew Chem Int Ed Engl. 2022 Nov 2;61(44):e202210568. doi: 10.1002/anie.202210568. Epub 2022 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验