Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
Department of Biology, Stanford University, Stanford, CA 94305, USA.
Curr Opin Neurobiol. 2018 Jun;50:17-23. doi: 10.1016/j.conb.2017.10.015. Epub 2017 Nov 8.
Understanding signaling pathways in neuroscience requires high-resolution maps of the underlying protein networks. Proximity-dependent biotinylation with engineered enzymes, in combination with mass spectrometry-based quantitative proteomics, has emerged as a powerful method to dissect molecular interactions and the localizations of endogenous proteins. Recent applications to neuroscience have provided insights into the composition of sub-synaptic structures, including the synaptic cleft and inhibitory post-synaptic density. Here we compare the different enzymes and small-molecule probes for proximity labeling in the context of cultured neurons and tissue, review existing studies, and provide technical suggestions for the in vivo application of proximity labeling.
理解神经科学中的信号通路需要高分辨率的蛋白质网络图谱。利用工程酶进行邻近依赖性生物素化,结合基于质谱的定量蛋白质组学,已经成为一种强大的方法,可以剖析分子相互作用和内源性蛋白质的定位。最近在神经科学中的应用提供了对突触小间隙和抑制性突触后密度等亚突触结构组成的深入了解。在这里,我们比较了在培养神经元和组织中进行邻近标记的不同酶和小分子探针,综述了现有的研究,并为邻近标记的体内应用提供了技术建议。