Chan Zora Chui-Kuen, Qi Cheng, Cai Yuanhong, Li Xin, Ren Jing
Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
Sci Rep. 2024 Dec 30;14(1):32126. doi: 10.1038/s41598-024-83928-w.
Proximity-dependent biotinylation coupled with mass spectrometry enables the characterization of subcellular proteomes. This technique has significantly advanced neuroscience by revealing sub-synaptic protein networks, such as the synaptic cleft and post-synaptic density. Profiling proteins at this detailed level is essential for understanding the molecular mechanisms of neuronal connectivity and transmission. Despite its recent successful application to various neuronal types, proximity labelling has yet to be employed to study the serotonin system. In this study, we uncovered an unreported inhibitory mechanism of serotonin on horseradish peroxidase (HRP)-based biotinylation. Our result showed that serotonin significantly reduces biotinylation levels across various Biotin-XX-tyramide (BxxP) concentrations in HEK293T cells and primary neurons, whereas dopamine exerts minimal interference, highlighting the specificity of this inhibition. To counteract this inhibition, we demonstrated that Dz-PEG, an aryl diazonium compound that consumes serotonin through an azo-coupling reaction, restores biotinylation efficiency. Label-free quantitative proteomics confirmed that serotonin inhibits biotinylation, and that Dz-PEG effectively reverses this inhibition. These findings highlight the importance of accounting for neurotransmitter interference in proximity-dependent biotinylation studies, especially for cell-type specific profiling in neuroscience. Additionally, we provided a potential strategy to mitigate these challenges, thereby enhancing the accuracy and reliability of such studies.
邻近依赖性生物素化结合质谱技术能够对亚细胞蛋白质组进行表征。这项技术通过揭示突触亚蛋白质网络,如突触间隙和突触后致密物,极大地推动了神经科学的发展。在如此详细的水平上分析蛋白质对于理解神经元连接和传递的分子机制至关重要。尽管最近它已成功应用于各种神经元类型,但邻近标记尚未用于研究血清素系统。在本研究中,我们发现了血清素对基于辣根过氧化物酶(HRP)的生物素化的一种未报道的抑制机制。我们的结果表明,血清素显著降低了HEK293T细胞和原代神经元中各种生物素-XX-酪胺(BxxP)浓度下的生物素化水平,而多巴胺的干扰最小,突出了这种抑制的特异性。为了抵消这种抑制作用,我们证明了Dz-PEG,一种通过偶氮偶联反应消耗血清素的芳基重氮化合物,可恢复生物素化效率。无标记定量蛋白质组学证实血清素抑制生物素化,并且Dz-PEG有效地逆转了这种抑制作用。这些发现突出了在邻近依赖性生物素化研究中考虑神经递质干扰的重要性,特别是对于神经科学中细胞类型特异性分析。此外,我们提供了一种减轻这些挑战的潜在策略,从而提高此类研究的准确性和可靠性。