School of Physical and Geographical Sciences, Keele University, UK.
Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
Water Res. 2018 Jan 1;128:362-382. doi: 10.1016/j.watres.2017.10.059. Epub 2017 Oct 30.
Chlorinated ethenes (CEs) are legacy contaminants whose chemical footprint is expected to persist in aquifers around the world for many decades to come. These organohalides have been reported in river systems with concerning prevalence and are thought to be significant chemical stressors in urban water ecosystems. The aquifer-river interface (known as the hyporheic zone) is a critical pathway for CE discharge to surface water bodies in groundwater baseflow. This pore water system may represent a natural bioreactor where anoxic and oxic biotransformation process act in synergy to reduce or even eliminate contaminant fluxes to surface water. Here, we critically review current process understanding of anaerobic CE respiration in the competitive framework of hyporheic zone biogeochemical cycling fuelled by in-situ fermentation of natural organic matter. We conceptualise anoxic-oxic interface development for metabolic and co-metabolic mineralisation by a range of aerobic bacteria with a focus on vinyl chloride degradation pathways. The superimposition of microbial metabolic processes occurring in sediment biofilms and bulk solute transport delivering reactants produces a scale dependence in contaminant transformation rates. Process interpretation is often confounded by the natural geological heterogeneity typical of most riverbed environments. We discuss insights from recent field experience of CE plumes discharging to surface water and present a range of practical monitoring technologies which address this inherent complexity at different spatial scales. Future research must address key dynamics which link supply of limiting reactants, residence times and microbial ecophysiology to better understand the natural attenuation capacity of hyporheic systems.
氯代乙稀(CEs)是遗留污染物,预计在未来几十年内,其化学足迹将在全球范围内的含水层中持续存在。这些有机卤化物在河流系统中被广泛报道,被认为是城市水生态系统中的重要化学胁迫物。含水层-河流界面(称为底流区)是地下水基流中 CE 排放到地表水的关键途径。这个孔隙水系统可能代表一个自然的生物反应器,其中缺氧和需氧生物转化过程协同作用,减少甚至消除污染物向地表水的通量。在这里,我们批判性地回顾了当前对地下水流区生物地球化学循环中自然有机物质原位发酵驱动的竞争框架下的厌氧 CE 呼吸过程的理解。我们将一系列好氧细菌的代谢和共代谢矿化的缺氧-需氧界面发展概念化,重点是氯乙烯降解途径。发生在沉积物生物膜中的微生物代谢过程与输送反应物的体相溶质传输的叠加,导致污染物转化速率具有尺度依赖性。过程解释常常受到大多数河床环境中典型的自然地质异质性的影响。我们讨论了从最近 CE 羽流排放到地表水的实地经验中获得的见解,并提出了一系列实用的监测技术,这些技术在不同的空间尺度上解决了这种固有复杂性。未来的研究必须解决将限制反应物的供应、停留时间和微生物生理生态联系起来的关键动力学问题,以更好地理解底流系统的自然衰减能力。