Research Laboratory of Electronics (RLE), Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Nat Commun. 2017 Nov 10;8(1):1435. doi: 10.1038/s41467-017-01558-5.
Microelectromechanical systems (MEMS) enable many modern-day technologies, including actuators, motion sensors, drug delivery systems, projection displays, etc. Currently, MEMS fabrication techniques are primarily based on silicon micromachining processes, resulting in rigid and low aspect ratio structures. In this study, we report on the discovery of MEMS functionality in fibres, thereby opening a path towards flexible, high-aspect ratio, and textile MEMS. The method used for generating these MEMS fibres leverages a preform-to-fibre thermal drawing process, in which the MEMS architecture and materials are embedded into a preform and drawn into kilometers of microstructured multimaterial fibre devices. The fibre MEMS functionality is enabled by an electrostrictive P(VDF-TrFE-CFE) ferrorelaxor terpolymer layer running the entire length of the fibre. Several modes of operation are investigated, including thickness-mode actuation with over 8% strain at 25 MV m, bending-mode actuation due to asymmetric positioning of the electrostrictive layer, and resonant fibre vibration modes tunable under AC-driving conditions.
微机电系统(MEMS)使许多现代技术成为可能,包括执行器、运动传感器、药物输送系统、投影显示器等。目前,MEMS 制造技术主要基于硅微加工工艺,导致结构刚性和低纵横比。在这项研究中,我们报告了纤维中 MEMS 功能的发现,从而为柔性、高纵横比和纺织 MEMS 开辟了道路。用于生成这些 MEMS 纤维的方法利用了预制件到纤维的热拉伸工艺,其中 MEMS 结构和材料被嵌入预制件并拉伸成数公里长的微结构化多材料纤维器件。纤维 MEMS 功能由沿纤维全长运行的电致伸缩 P(VDF-TrFE-CFE)铁电弛豫三元共聚物层实现。研究了几种工作模式,包括厚度模式致动,在 25 MV m 下应变超过 8%,由于电致伸缩层的不对称定位导致弯曲模式致动,以及在交流驱动条件下可调谐的共振纤维振动模式。