Suppr超能文献

在亚波长尺度下呈现类石墨烯色散的晶态苏打罐超材料。

Crystalline Soda Can Metamaterial exhibiting Graphene-like Dispersion at subwavelength scale.

作者信息

Yves Simon, Lemoult Fabrice, Fink Mathias, Lerosey Geoffroy

机构信息

Institut Langevin, CNRS UMR 7587, ESPCI Paris, PSL Research University, 1 rue Jussieu, 75005, Paris, France.

出版信息

Sci Rep. 2017 Nov 10;7(1):15359. doi: 10.1038/s41598-017-15335-3.

Abstract

Graphene, a honeycomb lattice of carbon atoms ruled by tight-binding interaction, exhibits extraordinary electronic properties due to the presence of Dirac cones within its band structure. These intriguing singularities have naturally motivated the discovery of their classical analogues. In this work, we present a general and direct procedure to reproduce the peculiar physics of graphene within a very simple acoustic metamaterial: a double lattice of soda cans resonating at two different frequencies. The first triangular sub-lattice generates a bandgap at low frequency, which induces a tight-binding coupling between the resonant defects of the second honeycomb one, hence allowing us to obtain a graphene-like band structure. We prove the relevance of this approach by showing that both numerical and experimental dispersion relations exhibit the requested Dirac cone. We also demonstrate the straightforward monitoring of the coupling strength within the crystal of resonant defects. This work shows that crystalline metamaterials are very promising candidates to investigate tantalizing solid-state physics phenomena with classical waves.

摘要

石墨烯是一种由紧束缚相互作用支配的碳原子蜂窝晶格,由于其能带结构中存在狄拉克锥,因而展现出非凡的电子特性。这些引人入胜的奇异点自然激发了人们对其经典类似物的探索。在这项工作中,我们提出了一种通用且直接的方法,可在一种非常简单的声学超材料中重现石墨烯的奇特物理特性:由以两种不同频率共振的汽水罐构成的双晶格。第一个三角形子晶格在低频处产生一个带隙,这在第二个蜂窝状子晶格的共振缺陷之间引发紧束缚耦合,从而使我们能够获得类似石墨烯的能带结构。我们通过表明数值和实验色散关系均呈现出所需的狄拉克锥,证明了这种方法的相关性。我们还展示了对共振缺陷晶体内部耦合强度的直接监测。这项工作表明,晶体超材料是利用经典波研究诱人的固态物理现象的非常有前景的候选材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f03/5681593/d5f36d3488ee/41598_2017_15335_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验