Yves Simon, Lemoult Fabrice, Fink Mathias, Lerosey Geoffroy
Institut Langevin, CNRS UMR 7587, ESPCI Paris, PSL Research University, 1 rue Jussieu, 75005, Paris, France.
Sci Rep. 2017 Nov 10;7(1):15359. doi: 10.1038/s41598-017-15335-3.
Graphene, a honeycomb lattice of carbon atoms ruled by tight-binding interaction, exhibits extraordinary electronic properties due to the presence of Dirac cones within its band structure. These intriguing singularities have naturally motivated the discovery of their classical analogues. In this work, we present a general and direct procedure to reproduce the peculiar physics of graphene within a very simple acoustic metamaterial: a double lattice of soda cans resonating at two different frequencies. The first triangular sub-lattice generates a bandgap at low frequency, which induces a tight-binding coupling between the resonant defects of the second honeycomb one, hence allowing us to obtain a graphene-like band structure. We prove the relevance of this approach by showing that both numerical and experimental dispersion relations exhibit the requested Dirac cone. We also demonstrate the straightforward monitoring of the coupling strength within the crystal of resonant defects. This work shows that crystalline metamaterials are very promising candidates to investigate tantalizing solid-state physics phenomena with classical waves.
石墨烯是一种由紧束缚相互作用支配的碳原子蜂窝晶格,由于其能带结构中存在狄拉克锥,因而展现出非凡的电子特性。这些引人入胜的奇异点自然激发了人们对其经典类似物的探索。在这项工作中,我们提出了一种通用且直接的方法,可在一种非常简单的声学超材料中重现石墨烯的奇特物理特性:由以两种不同频率共振的汽水罐构成的双晶格。第一个三角形子晶格在低频处产生一个带隙,这在第二个蜂窝状子晶格的共振缺陷之间引发紧束缚耦合,从而使我们能够获得类似石墨烯的能带结构。我们通过表明数值和实验色散关系均呈现出所需的狄拉克锥,证明了这种方法的相关性。我们还展示了对共振缺陷晶体内部耦合强度的直接监测。这项工作表明,晶体超材料是利用经典波研究诱人的固态物理现象的非常有前景的候选材料。