Institut Langevin, CNRS UMR 7587, ESPCI Paris, PSL Research University, 1 rue Jussieu, 75005 Paris, France.
CEA Saclay, IRAMIS, NIMBE, LICSEN, UMR 3685, F-91191 Gif sur Yvette, France.
Phys Rev Lett. 2018 Dec 28;121(26):267601. doi: 10.1103/PhysRevLett.121.267601.
The exciting discovery of bidimensional systems in condensed matter physics has triggered the search of their photonic analogues. In this Letter, we describe a general scheme to reproduce some of the systems ruled by a tight-binding Hamiltonian in a locally resonant metamaterial; by specifically controlling the structure and the composition it is possible to engineer the band structure at will. We numerically and experimentally demonstrate this assertion in the microwave domain by reproducing the band structure of graphene, the most famous example of those 2D systems, and by accurately extracting the Dirac cones. This is direct evidence that opting for a crystalline description of those subwavelength scaled systems, as opposed to the usual description in terms of effective parameters, makes them a really convenient tabletop platform to investigate the tantalizing challenges that solid-state physics offer.
凝聚态物理中二维体系的激动人心的发现引发了对其光子类似物的研究。在这封信中,我们描述了一种一般的方案,以在局域共振超材料中再现由紧束缚哈密顿量控制的一些系统;通过具体控制结构和组成,可以随心所欲地设计能带结构。我们通过在微波域中数值和实验证明了这一说法,重现了最著名的二维系统之一石墨烯的能带结构,并准确地提取了狄拉克锥。这直接证明了,对于那些亚波长尺度的系统,选择晶体描述而不是通常的有效参数描述,使它们成为一个非常方便的桌面平台,可以研究固体物理所带来的诱人挑战。