Suppr超能文献

创建一个用于药物化学的虚拟助手。

Creating a Virtual Assistant for Medicinal Chemistry.

作者信息

Vidler Lewis R, Baumgartner Matthew P

机构信息

Research and Development, Eli Lilly and Company Ltd., Sunninghill Road, Windlesham, Surrey GU20 6PH, United Kingdom.

Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California 92121, United States.

出版信息

ACS Med Chem Lett. 2019 Jun 7;10(7):1051-1055. doi: 10.1021/acsmedchemlett.9b00151. eCollection 2019 Jul 11.

Abstract

The virtual assistant concept is one that many technology companies have taken on despite having other well-developed and popular user interfaces. We wondered whether it would be possible to create an effective virtual assistant for a medicinal chemistry organization, the key being delivering the information the user would want to see, directly to them, at the right time. We introduce Kernel, an early prototype virtual assistant created at Lilly, and a number of examples of the scenarios that have been implemented to try to demonstrate the concept. A biochemical assay summary email is described that brings together new results and some basic analysis, delivered within an hour of new data appearing for that assay, and an email delivering new compound design ideas directly to the original submitter of a compound shortly after their compound was tested for the first time. We conclude with a high level description of the first example of a Design-Make-Test-Analyze cycle completed in the absence of any human intellectual input at Lilly. We believe that this concept has much potential in changing the way that computational results and analysis are delivered and consumed within a medicinal chemistry group, and we hope to inspire others to implement their own similar solutions.

摘要

尽管许多科技公司已经拥有其他成熟且受欢迎的用户界面,但它们仍采用了虚拟助手的概念。我们想知道是否有可能为药物化学组织创建一个有效的虚拟助手,关键在于在合适的时间直接向用户提供他们想要查看的信息。我们介绍了Kernel,这是礼来公司创建的一个早期虚拟助手原型,以及一些已实施的场景示例,以试图证明这一概念。描述了一种生化分析总结电子邮件,它在该分析出现新数据后的一小时内汇集新结果和一些基本分析,还有一种电子邮件在化合物首次测试后不久将新的化合物设计思路直接发送给该化合物的原始提交者。我们最后对礼来公司在没有任何人类智力投入的情况下完成的设计 - 制造 - 测试 - 分析循环的第一个示例进行了高层次描述。我们相信这个概念在改变药物化学团队中计算结果和分析的交付与使用方式方面具有很大潜力,并且我们希望激励其他人实施他们自己类似的解决方案。

相似文献

1
Creating a Virtual Assistant for Medicinal Chemistry.创建一个用于药物化学的虚拟助手。
ACS Med Chem Lett. 2019 Jun 7;10(7):1051-1055. doi: 10.1021/acsmedchemlett.9b00151. eCollection 2019 Jul 11.
4
Virtual screening of virtual libraries.虚拟文库的虚拟筛选。
Prog Med Chem. 2003;41:61-97. doi: 10.1016/s0079-6468(02)41002-8.
6
Internet and information technology use in treatment of diabetes.互联网和信息技术在糖尿病治疗中的应用。
Int J Clin Pract Suppl. 2010 Feb(166):41-6. doi: 10.1111/j.1742-1241.2009.02277.x.
9
10
[Docking method for drug discovery].
Yakugaku Zasshi. 2007 Jan;127(1):113-22. doi: 10.1248/yakushi.127.113.

引用本文的文献

本文引用的文献

1
Idea2Data: Toward a New Paradigm for Drug Discovery.从想法到数据:迈向药物发现的新范式
ACS Med Chem Lett. 2019 Feb 4;10(3):278-286. doi: 10.1021/acsmedchemlett.8b00488. eCollection 2019 Mar 14.
2
A retrosynthetic analysis algorithm implementation.一种逆合成分析算法的实现。
J Cheminform. 2019 Jan 3;11(1):1. doi: 10.1186/s13321-018-0323-6.
4
Automating drug discovery.自动化药物发现。
Nat Rev Drug Discov. 2018 Feb;17(2):97-113. doi: 10.1038/nrd.2017.232. Epub 2017 Dec 15.
7
Integrated Platform for Expedited Synthesis-Purification-Testing of Small Molecule Libraries.小分子文库快速合成-纯化-测试集成平台
ACS Med Chem Lett. 2017 Mar 28;8(4):461-465. doi: 10.1021/acsmedchemlett.7b00054. eCollection 2017 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验