Department of Chemistry, McGill University, 801 Sherbrooke St. W, Montreal, Quebec, Canada.
Department of Biology, McGill University, 3649 Promenade Sir William Osler, Montreal, Quebec, Canada.
Protein Sci. 2018 Feb;27(2):531-545. doi: 10.1002/pro.3345. Epub 2017 Dec 15.
Tubulins are an ancient family of eukaryotic proteins characterized by an amino-terminal globular domain and disordered carboxyl terminus. These carboxyl termini play important roles in modulating the behavior of microtubules in living cells. However, the atomic-level basis of their function is not well understood. These regions contain multiple acidic residues and their overall charges are modulated in vivo by post-translational modifications, for example, phosphorylation. In this study, we describe an application of NMR and computer Monte Carlo simulations to investigate how the modification of local charge alters the conformational sampling of the γ-tubulin carboxyl terminus. We compared the dynamics of two 39-residue polypeptides corresponding to the carboxyl-terminus of yeast γ-tubulin. One polypeptide comprised the wild-type amino acid sequence while the second contained a Y > D mutation at Y11 in the polypeptide (Y445 in the full protein). This mutation introduces additional negative charge at a site that is phosphorylated in vivo and produces a phenotype with perturbed microtubule function. NMR relaxation measurements show that the Y11D mutation produces dramatic changes in the millisecond-timescale motions of the entire polypeptide. This observation is supported by Monte Carlo simulations that-similar to NMR-predict the WT γ-CT is largely unstructured and that the substitution of Tyr 11 with Asp causes the sampling of extended conformations that are unique to the Y11D polypeptide.
微管蛋白是真核生物蛋白的一个古老家族,其特征为氨基端球状结构域和无规则的羧基末端。这些羧基末端在调节活细胞中微管的行为方面发挥着重要作用。然而,其功能的原子水平基础尚未得到很好的理解。这些区域包含多个酸性残基,其整体电荷通过翻译后修饰(例如磷酸化)在体内进行调节。在这项研究中,我们描述了一种应用 NMR 和计算机蒙特卡罗模拟来研究局部电荷修饰如何改变 γ-微管蛋白羧基末端构象采样的方法。我们比较了对应于酵母 γ-微管蛋白羧基末端的两个 39 个残基多肽的动力学。一个多肽包含野生型氨基酸序列,而第二个多肽在多肽中的 Y11 处包含 Y ⁇ D 突变(在全长蛋白中为 Y445)。该突变在体内磷酸化的位点引入了额外的负电荷,并产生了微管功能受到干扰的表型。NMR 弛豫测量表明,Y11D 突变导致整个多肽的毫秒时间尺度运动发生剧烈变化。蒙特卡罗模拟支持这一观察结果,与 NMR 类似,模拟预测 WT γ-CT 大部分没有结构,并且用 Asp 取代 Tyr 11 导致独特的 Y11D 多肽的延伸构象采样。