Suppr超能文献

预测内在无序蛋白质的序列依赖性主链动力学

Predicting the Sequence-Dependent Backbone Dynamics of Intrinsically Disordered Proteins.

作者信息

Qin Sanbo, Zhou Huan-Xiang

机构信息

Department of Chemistry and University of Illinois Chicago, Chicago, IL 60607, USA.

Department of Physics, University of Illinois Chicago, Chicago, IL 60607, USA.

出版信息

bioRxiv. 2024 Oct 1:2023.02.02.526886. doi: 10.1101/2023.02.02.526886.

Abstract

How the sequences of intrinsically disordered proteins (IDPs) code for functions is still an enigma. Dynamics, in particular residue-specific dynamics, holds crucial clues. Enormous efforts have been spent to characterize residue-specific dynamics of IDPs, mainly through NMR spin relaxation experiments. Here we present a sequence-based method, SeqDYN, for predicting residue-specific backbone dynamics of IDPs. SeqDYN employs a mathematical model with 21 parameters: one is a correlation length and 20 are the contributions of the amino acids to slow dynamics. Training on a set of 45 IDPs reveals aromatic, Arg, and long-branched aliphatic amino acids as the most active in slow dynamics whereas Gly and short polar amino acids as the least active. SeqDYN predictions not only provide an accurate and insightful characterization of sequence-dependent IDP dynamics but may also serve as indicators in a host of biophysical processes, including the propensities of IDP sequences to undergo phase separation.

摘要

内在无序蛋白质(IDP)的序列如何编码功能仍是一个谜。动力学,尤其是残基特异性动力学,包含着关键线索。人们已经付出了巨大努力来表征IDP的残基特异性动力学,主要通过核磁共振自旋弛豫实验。在此,我们提出一种基于序列的方法SeqDYN,用于预测IDP的残基特异性主链动力学。SeqDYN采用一个具有21个参数的数学模型:一个是相关长度,20个是氨基酸对慢动力学的贡献。对一组45个IDP进行训练后发现,芳香族、精氨酸和长支链脂肪族氨基酸在慢动力学中最为活跃,而甘氨酸和短极性氨基酸最不活跃。SeqDYN的预测不仅能准确且深入地表征依赖于序列的IDP动力学,还可作为许多生物物理过程的指标,包括IDP序列发生相分离的倾向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59bc/11455519/ca8d14d66656/nihpp-2023.02.02.526886v4-f0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验