Department of Structural Biology, St. Jude Children's Research Hospital , 263 Danny Thomas Place, Memphis, Tennessee 38105, United States.
Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis , One Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130, United States.
J Am Chem Soc. 2016 Nov 30;138(47):15323-15335. doi: 10.1021/jacs.6b10272. Epub 2016 Nov 17.
Many cell signaling events are coordinated by intrinsically disordered protein regions (IDRs) that undergo multisite Serine/Threonine phosphorylation. The conformational properties of these IDRs prior to and following multisite phosphorylation are directly relevant to understanding their functions. Here, we present results from biophysical studies and molecular simulations that quantify the conformational properties of an 81-residue IDR from the S. cerevisiae transcription factor Ash1. We show that the unphosphorylated Ash1 IDR adopts coil-like conformations that are expanded and well-solvated. This result contradicts inferences regarding global compaction that are derived from heuristics based on amino acid compositions for IDRs with low proline contents. Upon phosphorylation at ten distinct sites, the global conformational properties of pAsh1 are indistinguishable from those of unphosphorylated Ash1. This insensitivity derives from compensatory changes to the pattern of local and long-range intrachain contacts. We show that the conformational properties of Ash1 and pAsh1 can be explained in terms of the linear sequence patterning of proline and charged residues vis-à-vis all other residues. The sequence features of the Ash1 IDR are shared by many other IDRs that undergo multisite phosphorylation. Accordingly, we propose that our findings might be generalizable to other IDRs involved in cell signaling.
许多细胞信号事件是通过固有无序蛋白区域(IDR)协调的,这些区域会发生多个丝氨酸/苏氨酸磷酸化。在多位点磷酸化之前和之后,这些 IDR 的构象特性与理解它们的功能直接相关。在这里,我们展示了来自生物物理研究和分子模拟的结果,这些结果量化了来自酿酒酵母转录因子 Ash1 的 81 个残基 IDR 的构象特性。我们表明,未磷酸化的 Ash1 IDR 采用类似线圈的构象,这些构象是展开的且溶剂化良好。这一结果与基于低脯氨酸含量 IDR 的氨基酸组成的启发式方法得出的关于全局紧缩的推论相矛盾。在十个不同位点磷酸化后,pAsh1 的全局构象特性与未磷酸化的 Ash1 无法区分。这种不敏感性源于对局部和长程链内接触模式的补偿性变化。我们表明,Ash1 和 pAsh1 的构象特性可以根据脯氨酸和带电残基与所有其他残基的线性序列模式来解释。许多经历多位点磷酸化的其他 IDR 都具有 Ash1 IDR 的序列特征。因此,我们提出我们的发现可能适用于参与细胞信号的其他 IDR。