Department of Microbiology and Immunology, University of California, San Francisco, 600 16(th) Street, GH-S572, UCSF Box 2280, San Francisco, CA 94143-2280, USA.
Department of Microbiology and Immunology, University of California, San Francisco, 600 16(th) Street, GH-S572, UCSF Box 2280, San Francisco, CA 94143-2280, USA; Department of Biology, Stanford University, E200 Clark Center, 318 Campus Drive, Stanford, CA 94305, USA.
Curr Biol. 2017 Nov 20;27(22):3511-3519.e7. doi: 10.1016/j.cub.2017.09.067. Epub 2017 Nov 9.
The Aedes aegypti mosquito transmits arboviruses, including dengue, chikungunya, and Zika virus. Understanding the mechanisms underlying mosquito immunity could provide new tools to control arbovirus spread. Insects exploit two different RNAi pathways to combat viral and transposon infection: short interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs) [1, 2]. Endogenous viral elements (EVEs) are sequences from non-retroviral viruses that are inserted into the mosquito genome and can act as templates for the production of piRNAs [3, 4]. EVEs therefore represent a record of past infections and a reservoir of potential immune memory [5]. The large-scale organization of EVEs has been difficult to resolve with short-read sequencing because they tend to integrate into repetitive regions of the genome. To define the diversity, organization, and function of EVEs, we took advantage of the contiguity associated with long-read sequencing to generate a high-quality assembly of the Ae. aegypti-derived Aag2 cell line genome, an important and widely used model system. We show EVEs are acquired through recombination with specific classes of long terminal repeat (LTR) retrotransposons and organize into large loci (>50 kbp) characterized by high LTR density. These EVE-containing loci have increased density of piRNAs compared to similar regions without EVEs. Furthermore, we detected EVE-derived piRNAs consistent with a targeted processing of persistently infecting virus genomes. We propose that comparisons of EVEs across mosquito populations may explain differences in vector competence, and further study of the structure and function of these elements in the genome of mosquitoes may lead to epidemiological interventions.
埃及伊蚊传播黄病毒,包括登革热、基孔肯雅热和寨卡病毒。了解蚊子免疫的机制可以为控制虫媒病毒传播提供新的工具。昆虫利用两种不同的 RNAi 途径来对抗病毒和转座子感染:小干扰 RNA (siRNA) 和 PIWI 相互作用 RNA (piRNA) [1,2]。内源性病毒元件 (EVEs) 是来自非逆转录病毒的序列,插入蚊子基因组中,并可作为产生 piRNA 的模板[3,4]。因此,EVEs 代表了过去感染的记录和潜在免疫记忆的储备[5]。由于它们往往整合到基因组的重复区域,因此使用短读测序很难解决 EVEs 的大规模组织问题。为了确定 EVEs 的多样性、组织和功能,我们利用长读测序的连续性,生成了高质量的埃及伊蚊衍生的 Aag2 细胞系基因组组装,这是一个重要且广泛使用的模型系统。我们发现 EVEs 通过与特定类别的长末端重复 (LTR) 逆转录转座子的重组获得,并组织成具有高 LTR 密度的大基因座 (>50 kbp)。与没有 EVEs 的相似区域相比,这些含有 EVE 的基因座具有更高密度的 piRNA。此外,我们检测到与持续感染病毒基因组的靶向加工一致的 EVE 衍生的 piRNA。我们提出,对蚊子种群中的 EVEs 进行比较可能可以解释媒介能力的差异,进一步研究这些元素在蚊子基因组中的结构和功能可能会导致流行病学干预。