Suppr超能文献

具有米氏型收获项的时滞高斯捕食者-食饵模型的分支

Bifurcation of a delayed Gause predator-prey model with Michaelis-Menten type harvesting.

作者信息

Liu Wei, Jiang Yaolin

机构信息

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China; School of Mathematics and Computer Science, Xinyu University, Xinyu 338004, Jiangxi, China.

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.

出版信息

J Theor Biol. 2018 Feb 7;438:116-132. doi: 10.1016/j.jtbi.2017.11.007. Epub 2017 Nov 10.

Abstract

In this paper, a Gause predator-prey model with gestation delay and Michaelis-Menten type harvesting of prey is proposed and analyzed by considering Holling type III functional response. We first consider the local stability of the interior equilibrium by investigating the corresponding characteristic equation. In succession, we derive some sufficient conditions on the occurrence of the stability switches of the positive steady state by taking the gestation delay as a bifurcation parameter. It is shown that the delay can induce instability and small amplitude oscillations of population densities via Hopf bifurcations. Furthermore, the stability and direction of the Hopf bifurcations are determined by employing the center manifold argument. Finally, computer simulations are performed to illustrate our analytical findings, and the biological implications of our analytical findings are also discussed.

摘要

本文提出并分析了一个具有妊娠延迟和猎物的米氏型收获的高斯捕食者 - 猎物模型,该模型考虑了Holling III型功能反应。我们首先通过研究相应的特征方程来考虑内部平衡点的局部稳定性。接着,我们以妊娠延迟作为分岔参数,推导了关于正稳态稳定性切换发生的一些充分条件。结果表明,延迟可通过霍普夫分岔诱导种群密度的不稳定性和小振幅振荡。此外,利用中心流形理论确定了霍普夫分岔的稳定性和方向。最后,进行计算机模拟以说明我们的分析结果,并讨论了我们分析结果的生物学意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验