Suppr超能文献

将未知的未知变为已知的未知:纵向神经影像学研究中的缺失数据。

Making an unknown unknown a known unknown: Missing data in longitudinal neuroimaging studies.

机构信息

Centre for Educational Measurement at the University of Oslo, Norway.

Department of Psychology, University of Oregon, Eugene, OR, USA.

出版信息

Dev Cogn Neurosci. 2018 Oct;33:83-98. doi: 10.1016/j.dcn.2017.10.001. Epub 2017 Oct 28.

Abstract

The analysis of longitudinal neuroimaging data within the massively univariate framework provides the opportunity to study empirical questions about neurodevelopment. Missing outcome data are an all-to-common feature of any longitudinal study, a feature that, if handled improperly, can reduce statistical power and lead to biased parameter estimates. The goal of this paper is to provide conceptual clarity of the issues and non-issues that arise from analyzing incomplete data in longitudinal studies with particular focus on neuroimaging data. This paper begins with a review of the hierarchy of missing data mechanisms and their relationship to likelihood-based methods, a review that is necessary not just for likelihood-based methods, but also for multiple-imputation methods. Next, the paper provides a series of simulation studies with designs common in longitudinal neuroimaging studies to help illustrate missing data concepts regardless of interpretation. Finally, two applied examples are used to demonstrate the sensitivity of inferences under different missing data assumptions and how this may change the substantive interpretation. The paper concludes with a set of guidelines for analyzing incomplete longitudinal data that can improve the validity of research findings in developmental neuroimaging research.

摘要

在大规模单变量框架内分析纵向神经影像学数据为研究神经发育的实证问题提供了机会。缺失的结果数据是任何纵向研究中常见的特征,如果处理不当,可能会降低统计能力并导致参数估计有偏差。本文的目的是提供概念上的清晰认识,说明在纵向研究中分析不完整数据时出现的问题和不会出现的问题,特别关注神经影像学数据。本文首先回顾了缺失数据机制的层次结构及其与基于似然的方法的关系,这不仅对于基于似然的方法,而且对于多重插补方法都是必要的。接下来,本文提供了一系列模拟研究,这些研究设计在纵向神经影像学研究中很常见,有助于说明缺失数据的概念,而不管其解释如何。最后,使用两个应用实例来说明在不同缺失数据假设下推论的敏感性,以及这如何改变实质性解释。本文最后提出了一套分析不完整纵向数据的指南,可以提高发展神经影像学研究中研究结果的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c336/6969275/472fe8745080/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验