Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA 94305, United States of America.
Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, United States of America.
Med Image Anal. 2024 Dec;98:103325. doi: 10.1016/j.media.2024.103325. Epub 2024 Aug 24.
Recent advances in generative models have paved the way for enhanced generation of natural and medical images, including synthetic brain MRIs. However, the mainstay of current AI research focuses on optimizing synthetic MRIs with respect to visual quality (such as signal-to-noise ratio) while lacking insights into their relevance to neuroscience. To generate high-quality T1-weighted MRIs relevant for neuroscience discovery, we present a two-stage Diffusion Probabilistic Model (called BrainSynth) to synthesize high-resolution MRIs conditionally-dependent on metadata (such as age and sex). We then propose a novel procedure to assess the quality of BrainSynth according to how well its synthetic MRIs capture macrostructural properties of brain regions and how accurately they encode the effects of age and sex. Results indicate that more than half of the brain regions in our synthetic MRIs are anatomically plausible, i.e., the effect size between real and synthetic MRIs is small relative to biological factors such as age and sex. Moreover, the anatomical plausibility varies across cortical regions according to their geometric complexity. As is, the MRIs generated by BrainSynth significantly improve the training of a predictive model to identify accelerated aging effects in an independent study. These results indicate that our model accurately capture the brain's anatomical information and thus could enrich the data of underrepresented samples in a study. The code of BrainSynth will be released as part of the MONAI project at https://github.com/Project-MONAI/GenerativeModels.
生成模型的最新进展为自然和医学图像的生成提供了新途径,包括合成脑 MRI。然而,当前人工智能研究的重点主要是优化合成 MRI 的视觉质量(如信噪比),而缺乏对其与神经科学相关性的深入了解。为了生成与神经科学发现相关的高质量 T1 加权 MRI,我们提出了一个两阶段扩散概率模型(称为 BrainSynth),该模型可以根据元数据(如年龄和性别)条件生成高分辨率 MRI。然后,我们提出了一种新的方法来评估 BrainSynth 的质量,根据其合成 MRI 对大脑区域宏观结构属性的捕捉程度以及对年龄和性别影响的编码准确性来评估。结果表明,我们合成 MRI 中的一半以上的大脑区域在解剖学上是合理的,即真实和合成 MRI 之间的效果大小相对于年龄和性别等生物学因素较小。此外,根据皮质区域的几何复杂度,解剖合理性也有所不同。此外,BrainSynth 生成的 MRI 显著提高了在独立研究中识别加速衰老效应的预测模型的训练效果。这些结果表明,我们的模型准确地捕捉了大脑的解剖信息,因此可以丰富研究中代表性不足的样本的数据。BrainSynth 的代码将作为 MONAI 项目的一部分在 https://github.com/Project-MONAI/GenerativeModels 上发布。