Suppr超能文献

下一代测序在诊断病理学中的应用。

Next-Generation Sequencing in Diagnostic Pathology.

出版信息

Pathobiology. 2017;84(6):292-305. doi: 10.1159/000480089. Epub 2017 Oct 31.

Abstract

Interrogation of tissue informs on patient management through delivery of a diagnosis together with associated clinically relevant data. The diagnostic pathologist will usually evaluate the morphological appearances of a tissue sample and, occasionally, the pattern of expression of a limited number of biomarkers. Recent developments in sequencing technology mean that DNA and RNA from tissue samples can now be interrogated in great detail. These new technologies, collectively known as next-generation sequencing (NGS), generate huge amounts of data which can be used to support patient management. In order to maximize the utility of tissue interrogation, the molecular data need to be interpreted and integrated with the morphological data. However, in order to interpret the molecular data, the pathologist must understand the utility and the limitations of NGS data. In this review, the principles behind NGS technologies are described. In addition, the caveats in the interpretation of the data are discussed, and a scheme is presented to "classify" the types of data which are generated. Finally, a glossary of new terminology is included to help pathologists become familiar with the lexicon of NGS-derived molecular data.

摘要

通过提供诊断以及相关临床相关数据,对组织进行分析可为患者管理提供信息。诊断病理学家通常会评估组织样本的形态外观,偶尔还会评估少数生物标志物的表达模式。测序技术的最新进展意味着现在可以详细分析来自组织样本的 DNA 和 RNA。这些新技术统称为下一代测序(NGS),可生成大量数据,这些数据可用于支持患者管理。为了最大程度地利用组织分析,需要对分子数据进行解释并与形态数据进行整合。但是,为了解释分子数据,病理学家必须了解 NGS 数据的用途和局限性。在这篇综述中,描述了 NGS 技术的原理。此外,还讨论了数据解释中的注意事项,并提出了一种“分类”生成的数据类型的方案。最后,还包括一个新术语词汇表,以帮助病理学家熟悉 NGS 衍生的分子数据的术语。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验