Suppr超能文献

人工四螺旋锰蛋白与球形红杆菌反应中心之间电子转移的结合与能量学

Binding and Energetics of Electron Transfer between an Artificial Four-Helix Mn-Protein and Reaction Centers from Rhodobacter sphaeroides.

作者信息

Espiritu Eduardo, Olson Tien L, Williams JoAnn C, Allen James P

机构信息

School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287-1604, United States.

出版信息

Biochemistry. 2017 Dec 12;56(49):6460-6469. doi: 10.1021/acs.biochem.7b00978. Epub 2017 Nov 28.

Abstract

The ability of an artificial four-helix bundle Mn-protein, P1, to bind and transfer an electron to photosynthetic reaction centers from the purple bacterium Rhodobacter sphaeroides was characterized using optical spectroscopy. Upon illumination of reaction centers, an electron is transferred from P, the bacteriochlorophyll dimer, to Q, the primary electron acceptor. The P1 Mn-protein can bind to the reaction center and reduce the oxidized bacteriochlorophyll dimer, P, with a dissociation constant of 1.2 μM at pH 9.4, comparable to the binding constant of c-type cytochromes. Amino acid substitutions of surface residues on the Mn-protein resulted in increases in the dissociation constant to 8.3 μM. The extent of reduction of P by the P1 Mn-protein was dependent on the P/P midpoint potential and the pH. Analysis of the free energy difference yielded a midpoint potential of approximately 635 mV at pH 9.4 for the Mn cofactor of the P1 Mn-protein, a value similar to those found for other Mn cofactors in proteins. The linear dependence of -56 mV/pH is consistent with one proton being released upon Mn oxidation, allowing the complex to maintain overall charge neutrality. These outcomes demonstrate the feasibility of designing four-helix bundles and other artificial metalloproteins to bind and transfer electrons to bacterial reaction centers and establish the usefulness of this system as a platform for designing sites to bind novel metal cofactors capable of performing complex oxidation-reduction reactions.

摘要

利用光谱学对一种人工四螺旋束状锰蛋白P1进行了表征,该蛋白能够结合来自球形红细菌的光合反应中心并向其转移电子。在光照反应中心时,电子从细菌叶绿素二聚体P转移到初级电子受体Q。P1锰蛋白能与反应中心结合,并还原氧化态的细菌叶绿素二聚体P,在pH 9.4时其解离常数为1.2 μM,与c型细胞色素的结合常数相当。锰蛋白表面残基的氨基酸取代导致解离常数增加到8.3 μM。P1锰蛋白对P的还原程度取决于P/P中点电位和pH值。对自由能差的分析得出,在pH 9.4时,P1锰蛋白的锰辅因子的中点电位约为635 mV,该值与蛋白质中其他锰辅因子的值相似。-56 mV/pH的线性依赖性与锰氧化时释放一个质子一致,从而使复合物保持整体电荷中性。这些结果证明了设计四螺旋束和其他人工金属蛋白以结合电子并将其转移到细菌反应中心的可行性,并确立了该系统作为设计能够进行复杂氧化还原反应的新型金属辅因子结合位点平台的实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验