Suppr超能文献

纳入线性能量传递的调强质子治疗优化。

Linear energy transfer incorporated intensity modulated proton therapy optimization.

机构信息

Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America. Author to whom any correspondence should be addressed.

出版信息

Phys Med Biol. 2017 Dec 19;63(1):015013. doi: 10.1088/1361-6560/aa9a2e.

Abstract

The purpose of this study was to investigate the feasibility of incorporating linear energy transfer (LET) into the optimization of intensity modulated proton therapy (IMPT) plans. Because increased LET correlates with increased biological effectiveness of protons, high LETs in target volumes and low LETs in critical structures and normal tissues are preferred in an IMPT plan. However, if not explicitly incorporated into the optimization criteria, different IMPT plans may yield similar physical dose distributions but greatly different LET, specifically dose-averaged LET, distributions. Conventionally, the IMPT optimization criteria (or cost function) only includes dose-based objectives in which the relative biological effectiveness (RBE) is assumed to have a constant value of 1.1. In this study, we added LET-based objectives for maximizing LET in target volumes and minimizing LET in critical structures and normal tissues. Due to the fractional programming nature of the resulting model, we used a variable reformulation approach so that the optimization process is computationally equivalent to conventional IMPT optimization. In this study, five brain tumor patients who had been treated with proton therapy at our institution were selected. Two plans were created for each patient based on the proposed LET-incorporated optimization (LETOpt) and the conventional dose-based optimization (DoseOpt). The optimized plans were compared in terms of both dose (assuming a constant RBE of 1.1 as adopted in clinical practice) and LET. Both optimization approaches were able to generate comparable dose distributions. The LET-incorporated optimization achieved not only pronounced reduction of LET values in critical organs, such as brainstem and optic chiasm, but also increased LET in target volumes, compared to the conventional dose-based optimization. However, on occasion, there was a need to tradeoff the acceptability of dose and LET distributions. Our conclusion is that the inclusion of LET-dependent criteria in the IMPT optimization could lead to similar dose distributions as the conventional optimization but superior LET distributions in target volumes and normal tissues. This may have substantial advantages in improving tumor control and reducing normal tissue toxicities.

摘要

本研究旨在探讨将线性能量传递(LET)纳入调强质子治疗(IMPT)计划优化的可行性。由于 LET 增加与质子生物学效应增加相关,因此在 IMPT 计划中,靶区中应采用高 LET,而在危及器官和正常组织中应采用低 LET。然而,如果没有明确纳入优化标准,不同的 IMPT 计划可能会产生相似的物理剂量分布,但 LET,特别是剂量平均 LET 分布会有很大差异。传统上,IMPT 优化标准(或成本函数)仅包括基于剂量的目标,其中相对生物学效应(RBE)被假定为恒定值 1.1。在本研究中,我们添加了基于 LET 的目标,以最大化靶区中的 LET,并最小化危及器官和正常组织中的 LET。由于所得到的模型具有分数规划性质,我们使用了变量重述方法,以使优化过程在计算上等效于传统的 IMPT 优化。在本研究中,选择了在我们机构接受质子治疗的五名脑肿瘤患者。为每位患者基于提出的包含 LET 的优化(LETOpt)和传统的基于剂量的优化(DoseOpt)创建了两个计划。基于剂量(采用临床实践中采用的恒定 RBE 值 1.1)和 LET 比较了优化计划。两种优化方法都能够生成可比的剂量分布。与传统的基于剂量的优化相比,包含 LET 的优化不仅实现了危及器官(如脑干和视交叉)中的 LET 值显著降低,而且还提高了靶区中的 LET。然而,有时需要权衡剂量和 LET 分布的可接受性。我们的结论是,在 IMPT 优化中包含 LET 相关标准可能会导致与传统优化相似的剂量分布,但在靶区和正常组织中具有更好的 LET 分布。这可能在提高肿瘤控制和降低正常组织毒性方面具有重要优势。

相似文献

1
Linear energy transfer incorporated intensity modulated proton therapy optimization.
Phys Med Biol. 2017 Dec 19;63(1):015013. doi: 10.1088/1361-6560/aa9a2e.
5
Incorporating variable RBE in IMPT optimization for ependymoma.
J Appl Clin Med Phys. 2024 Jan;25(1):e14207. doi: 10.1002/acm2.14207. Epub 2023 Nov 20.
6
Reoptimization of Intensity Modulated Proton Therapy Plans Based on Linear Energy Transfer.
Int J Radiat Oncol Biol Phys. 2016 Dec 1;96(5):1097-1106. doi: 10.1016/j.ijrobp.2016.08.038. Epub 2016 Sep 1.
7
Linear energy transfer-guided optimization in intensity modulated proton therapy: feasibility study and clinical potential.
Int J Radiat Oncol Biol Phys. 2013 Sep 1;87(1):216-22. doi: 10.1016/j.ijrobp.2013.05.013. Epub 2013 Jun 19.
9
Variations in linear energy transfer within clinical proton therapy fields and the potential for biological treatment planning.
Int J Radiat Oncol Biol Phys. 2011 Aug 1;80(5):1559-66. doi: 10.1016/j.ijrobp.2010.10.027. Epub 2010 Dec 14.
10
Robust intensity-modulated proton therapy to reduce high linear energy transfer in organs at risk.
Med Phys. 2017 Dec;44(12):6138-6147. doi: 10.1002/mp.12610. Epub 2017 Oct 26.

引用本文的文献

1
Impact of dose calculation accuracy on inverse linear energy transfer optimization for intensity-modulated proton therapy.
Precis Radiat Oncol. 2022 Dec 8;7(1):36-44. doi: 10.1002/pro6.1179. eCollection 2023 Mar.
4
Pediatric CNS Radiation Oncology: Recent Developments and Novel Techniques.
Curr Oncol. 2025 Mar 20;32(3):180. doi: 10.3390/curroncol32030180.
5
Linear approximation of variable relative biological effectiveness models for proton therapy.
Phys Imaging Radiat Oncol. 2024 Dec 24;33:100691. doi: 10.1016/j.phro.2024.100691. eCollection 2025 Jan.
6
Biological optimization for hybrid proton-photon radiotherapy.
Phys Med Biol. 2024 May 30;69(11). doi: 10.1088/1361-6560/ad4d51.
8
Incorporating variable RBE in IMPT optimization for ependymoma.
J Appl Clin Med Phys. 2024 Jan;25(1):e14207. doi: 10.1002/acm2.14207. Epub 2023 Nov 20.
10
Proton linear energy transfer and variable relative biological effectiveness for adolescent patients with Hodgkin lymphoma.
BJR Open. 2023 Feb 15;5(1):20230012. doi: 10.1259/bjro.20230012. eCollection 2023.

本文引用的文献

1
Reoptimization of Intensity Modulated Proton Therapy Plans Based on Linear Energy Transfer.
Int J Radiat Oncol Biol Phys. 2016 Dec 1;96(5):1097-1106. doi: 10.1016/j.ijrobp.2016.08.038. Epub 2016 Sep 1.
2
Clinical evidence of variable proton biological effectiveness in pediatric patients treated for ependymoma.
Radiother Oncol. 2016 Dec;121(3):395-401. doi: 10.1016/j.radonc.2016.11.001. Epub 2016 Nov 16.
3
Validation of a track repeating algorithm for intensity modulated proton therapy: clinical cases study.
Phys Med Biol. 2016 Apr 7;61(7):2633-45. doi: 10.1088/0031-9155/61/7/2633. Epub 2016 Mar 10.
5
A phenomenological relative biological effectiveness (RBE) model for proton therapy based on all published in vitro cell survival data.
Phys Med Biol. 2015 Nov 7;60(21):8399-416. doi: 10.1088/0031-9155/60/21/8399. Epub 2015 Oct 13.
6
Imaging Changes in Pediatric Intracranial Ependymoma Patients Treated With Proton Beam Radiation Therapy Compared to Intensity Modulated Radiation Therapy.
Int J Radiat Oncol Biol Phys. 2015 Sep 1;93(1):54-63. doi: 10.1016/j.ijrobp.2015.05.018. Epub 2015 May 16.
8
Linear energy transfer painting with proton therapy: a means of reducing radiation doses with equivalent clinical effectiveness.
Int J Radiat Oncol Biol Phys. 2015 Apr 1;91(5):1057-64. doi: 10.1016/j.ijrobp.2014.12.049.
9
Promise and pitfalls of heavy-particle therapy.
J Clin Oncol. 2014 Sep 10;32(26):2855-63. doi: 10.1200/JCO.2014.55.1945. Epub 2014 Aug 11.
10
Site-specific range uncertainties caused by dose calculation algorithms for proton therapy.
Phys Med Biol. 2014 Aug 7;59(15):4007-31. doi: 10.1088/0031-9155/59/15/4007. Epub 2014 Jul 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验