Suppr超能文献

头颈部癌放疗患者结局研究的批判性综述

Critical review of patient outcome study in head and neck cancer radiotherapy.

作者信息

Chen Jingyuan, Yang Yunze, Liu Chenbin, Feng Hongying, Holmes Jason M, Zhang Lian, Frank Steven J, Simone Charles B, Ma Daniel J, Patel Samir H, Liu Wei

机构信息

Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA.

Department of Radiation Oncology, the University of Miami, FL 33136, USA.

出版信息

ArXiv. 2025 Mar 19:arXiv:2503.15691v1.

Abstract

Rapid technological advances in radiation therapy have significantly improved dose delivery and tumor control for head and neck cancers. However, treatment-related toxicities caused by high-dose exposure to critical structures remain a significant clinical challenge, underscoring the need for accurate prediction of clinical outcomes-encompassing both tumor control and adverse events (AEs). This review critically evaluates the evolution of data-driven approaches in predicting patient outcomes in head and neck cancer patients treated with radiation therapy, from traditional dose-volume constraints to cutting-edge artificial intelligence (AI) and causal inference framework. The integration of linear energy transfer in patient outcomes study, which has uncovered critical mechanisms behind unexpected toxicity, was also introduced for proton therapy. Three transformative methodological advances are reviewed: radiomics, AI-based algorithms, and causal inference frameworks. While radiomics has enabled quantitative characterization of medical images, AI models have demonstrated superior capability than traditional models. However, the field faces significant challenges in translating statistical correlations from real-world data into interventional clinical insights. We highlight that how causal inference methods can bridge this gap by providing a rigorous framework for identifying treatment effects. Looking ahead, we envision that combining these complementary approaches, especially the interventional prediction models, will enable more personalized treatment strategies, ultimately improving both tumor control and quality of life for head and neck cancer patients treated with radiation therapy.

摘要

放射治疗技术的快速进步显著改善了头颈部癌症的剂量传递和肿瘤控制。然而,高剂量照射关键结构所导致的与治疗相关的毒性仍然是一个重大的临床挑战,这凸显了准确预测临床结果(包括肿瘤控制和不良事件)的必要性。本综述批判性地评估了数据驱动方法在预测接受放射治疗的头颈部癌症患者预后方面的发展,从传统的剂量体积限制到前沿的人工智能(AI)和因果推断框架。还介绍了在患者预后研究中线性能量转移的整合,它揭示了意外毒性背后的关键机制,适用于质子治疗。本文综述了三个变革性的方法进展:放射组学、基于人工智能的算法和因果推断框架。虽然放射组学能够对医学图像进行定量表征,但人工智能模型已证明比传统模型具有更强的能力。然而,该领域在将现实世界数据中的统计相关性转化为干预性临床见解方面面临重大挑战。我们强调因果推断方法如何通过提供一个严格的框架来识别治疗效果,从而弥合这一差距。展望未来,我们设想将这些互补方法,特别是干预性预测模型相结合,将能够实现更个性化的治疗策略,最终改善接受放射治疗的头颈部癌症患者的肿瘤控制和生活质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb96/11957233/6aa685626338/nihpp-2503.15691v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验