Suppr超能文献

评估疾病发病率当前的时间和时空异常情况。

Assessing current temporal and space-time anomalies of disease incidence.

作者信息

Wu Chih-Chieh, Chen Chien-Hsiun, Shete Sanjay

机构信息

Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.

Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.

出版信息

PLoS One. 2017 Nov 13;12(11):e0188065. doi: 10.1371/journal.pone.0188065. eCollection 2017.

Abstract

Approaches used to early and accurately characterize epidemiologic patterns of disease incidence in a temporal and spatial series are becoming increasingly important. Cluster tests are generally designed for retrospective detection of epidemiologic anomalies in a temporal or space-time series. Timely identification of anomalies of disease or poisoning incidence during ongoing surveillance or an outbreak requires the use of sensitive statistical methods that recognize an incidence pattern at the time of occurrence. This report describes 2 novel analytical methods that focus on detecting anomalies of incidence at the time of occurrence in a temporal and space-time series. The first method describes the paucity of incidence at the time of occurrence in an ongoing surveillance and is designed to evaluate whether a decline in incidence occurs on the single current day or during the most recent few days. The second method provides an overall assessment of current clustering or paucity of incidence in a space-time series, allowing for several space regions. We illustrate the application of these methods using a subsample of a temporal series of data on the largest dengue outbreak in Taiwan in 2015 since World War II and demonstrate that they are useful to efficiently monitor incoming data for current clustering and paucity of incidence in a temporal and space-time series. In light of the recent global emergence and resurgence of Zika, dengue, and chikungunya infection, these approaching for detecting current anomalies of incidence in the ongoing surveillance of disease are particularly desired and needed.

摘要

用于早期并准确刻画疾病发病率在时间和空间序列中的流行病学模式的方法正变得越来越重要。聚类检验通常设计用于回顾性检测时间或时空序列中的流行病学异常情况。在持续监测或疫情爆发期间及时识别疾病或中毒发病率的异常情况,需要使用能够在发病时识别发病率模式的灵敏统计方法。本报告描述了两种新颖的分析方法,它们专注于检测时间和时空序列中发病时的发病率异常情况。第一种方法描述了持续监测中发病时发病率的稀少情况,并旨在评估发病率在当前单日或最近几天是否下降。第二种方法对时空序列中当前的聚类或发病率稀少情况进行总体评估,同时考虑多个空间区域。我们使用二战以来台湾2015年最大规模登革热疫情的时间序列数据子样本来说明这些方法的应用,并证明它们对于有效监测时间和时空序列中当前的聚类和发病率稀少情况的输入数据很有用。鉴于最近寨卡、登革热和基孔肯雅热感染在全球的出现和复发,在疾病的持续监测中检测当前发病率异常情况的这些方法尤其令人期待和需要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42ae/5683561/a59da38bc515/pone.0188065.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验