Suppr超能文献

共同成分分析:一种评估项目的适配方法。

Common components analysis: An adapted approach for evaluating programs.

作者信息

Morgan Nicole R, Davis Kelly D, Richardson Cameron, Perkins Daniel F

机构信息

Clearinghouse for Military Family Readiness, The Pennsylvania State University, 402 Marion Place, University Park, PA 16802, USA.

School of Social and Behavioral Health Sciences, Oregon State University, 410 Waldo Hall, Corvallis, OR 97330, USA.

出版信息

Eval Program Plann. 2018 Apr;67:1-9. doi: 10.1016/j.evalprogplan.2017.10.009. Epub 2017 Oct 12.

Abstract

Common Components Analysis (CCA) summarizes the results of program evaluations that utilize randomized control trials and have demonstrated effectiveness in improving their intended outcome(s) into their key elements. This area of research has integrated and modified the existing CCA approach to provide a means of evaluating components of programs without a solid evidence-base, across a variety of target outcomes. This adapted CCA approach (a) captures a variety of similar program characteristics to increase the quality of the comparison within components; (b) identifies components from four primary areas (i.e., content, process, barrier reduction, and sustainability) within specific programming domains (e.g., vocation, social); and (c) proposes future directions to test the extent to which the common components are associated with changes in intended program outcomes (e.g., employment, job retention). The purpose of this paper is to discuss the feasibility of this adapted CCA approach. To illustrate the utility of this technique, researchers used CCA with two popular employment programs that target successful Veteran reintegration but have limited program evaluation - Hire Heroes USA and Hire Our Heroes. This adapted CCA could be applied to longitudinal research designs to identify all utilized programs and the most promising components of these programs as they relate to changes in outcomes.

摘要

共同成分分析(CCA)总结了利用随机对照试验的项目评估结果,这些评估已证明在将其关键要素转化为预期结果方面是有效的。该研究领域整合并修改了现有的CCA方法,以提供一种在缺乏坚实证据基础的情况下,针对各种目标结果评估项目组成部分的方法。这种经过调整的CCA方法:(a)捕捉各种相似的项目特征,以提高各组成部分内比较的质量;(b)在特定的项目领域(如职业、社会)内,从四个主要领域(即内容、过程、障碍减少和可持续性)识别组成部分;(c)提出未来的研究方向,以检验共同成分与项目预期结果变化(如就业、工作保留)的关联程度。本文的目的是讨论这种经过调整的CCA方法的可行性。为了说明这项技术的实用性,研究人员将CCA应用于两个针对退伍军人成功重新融入社会但项目评估有限的热门就业项目——美国雇佣英雄组织和雇佣我们的英雄组织。这种经过调整的CCA可应用于纵向研究设计,以识别所有使用的项目以及这些项目与结果变化相关的最有前景的组成部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验