Suppr超能文献

食物过敏的诊断

Diagnosis of Food Allergy.

作者信息

Gupta Malika, Cox Amanda, Nowak-Węgrzyn Anna, Wang Julie

机构信息

Division of Allergy & Immunology, Department of Internal Medicine, University of Michigan, 24 Frank Lloyd Wright Drive, Suite H-2100, Ann Arbor, MI 48106, USA.

Department of Pediatrics, Icahn School of Medicine at Mount Sinai, Jaffe Food Allergy Institute, One Gustave Levy Place, Box 1198, New York, NY 10029, USA.

出版信息

Immunol Allergy Clin North Am. 2018 Feb;38(1):39-52. doi: 10.1016/j.iac.2017.09.004. Epub 2017 Oct 23.

Abstract

Food allergy diagnosis remains challenging. Most standard methods are unable to differentiate sensitization from clinical allergy. Recognizing food allergy is of utmost importance to prevent life-threatening reactions. On the other hand, faulty interpretation of tests leads to overdiagnosis and unnecessary food avoidances. Highly predictive models have been established for major food allergens based on skin prick testing and food-specific immunoglobulin E but are lacking for most other foods. Although many newer diagnostic techniques are improving the accuracy of food allergy diagnostics, an oral food challenge remains the only definitive method of confirming a food allergy.

摘要

食物过敏的诊断仍然具有挑战性。大多数标准方法无法区分致敏与临床过敏。识别食物过敏对于预防危及生命的反应至关重要。另一方面,对检测结果的错误解读会导致过度诊断和不必要的食物回避。基于皮肤点刺试验和食物特异性免疫球蛋白E,已经建立了针对主要食物过敏原的高预测性模型,但大多数其他食物缺乏此类模型。尽管许多更新的诊断技术正在提高食物过敏诊断的准确性,但口服食物激发试验仍然是确认食物过敏的唯一确定性方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验