Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, United Kingdom.
Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany.
Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):12737-12742. doi: 10.1073/pnas.1714074114. Epub 2017 Nov 13.
Respiratory complex I (NADH:ubiquinone oxidoreductase), one of the largest membrane-bound enzymes in mammalian cells, powers ATP synthesis by using the energy from electron transfer from NADH to ubiquinone-10 to drive protons across the energy-transducing mitochondrial inner membrane. Ubiquinone-10 is extremely hydrophobic, but in complex I the binding site for its redox-active quinone headgroup is ∼20 Å above the membrane surface. Structural data suggest it accesses the site by a narrow channel, long enough to accommodate almost all of its ∼50-Å isoprenoid chain. However, how ubiquinone/ubiquinol exchange occurs on catalytically relevant timescales, and whether binding/dissociation events are involved in coupling electron transfer to proton translocation, are unknown. Here, we use proteoliposomes containing complex I, together with a quinol oxidase, to determine the kinetics of complex I catalysis with ubiquinones of varying isoprenoid chain length, from 1 to 10 units. We interpret our results using structural data, which show the hydrophobic channel is interrupted by a highly charged region at isoprenoids 4-7. We demonstrate that ubiquinol-10 dissociation is not rate determining and deduce that ubiquinone-10 has both the highest binding affinity and the fastest binding rate. We propose that the charged region and chain directionality assist product dissociation, and that isoprenoid stepping ensures short transit times. These properties of the channel do not benefit the exhange of short-chain quinones, for which product dissociation may become rate limiting. Thus, we discuss how the long channel does not hinder catalysis under physiological conditions and the possible roles of ubiquinone/ubiquinol binding/dissociation in energy conversion.
呼吸复合物 I(NADH:泛醌氧化还原酶)是哺乳动物细胞中最大的膜结合酶之一,通过利用电子从 NADH 到泛醌-10 的转移能量来驱动质子穿过能量转换的线粒体内膜,从而产生 ATP。泛醌-10 极其疏水,但在复合物 I 中,其氧化还原活性醌头基团的结合位点位于膜表面上方约 20Å。结构数据表明,它通过一个足够长的狭窄通道进入该位点,以容纳其约 50Å 的异戊二烯链的几乎所有部分。然而,泛醌/泛醇的交换如何在催化相关的时间尺度上发生,以及结合/解离事件是否参与将电子转移与质子转运偶联,目前尚不清楚。在这里,我们使用含有复合物 I 的脂蛋白体,以及一种醌氧化酶,来确定具有不同异戊二烯链长度(从 1 个到 10 个单位)的泛醌的复合物 I 催化动力学。我们使用结构数据来解释我们的结果,这些数据显示疏水通道在异戊二烯 4-7 处被一个带高电荷的区域中断。我们证明了泛醇-10 的解离不是速率决定步骤,并推断出泛醌-10 具有最高的结合亲和力和最快的结合速率。我们提出,带电荷的区域和链的方向性有助于产物的解离,而异戊二烯的步移确保了较短的转运时间。该通道的这些特性不利于短链泛醌的交换,对于短链泛醌来说,产物的解离可能成为限速步骤。因此,我们讨论了长通道在生理条件下如何不妨碍催化作用,以及泛醌/泛醇结合/解离在能量转换中的可能作用。