Suppr超能文献

呼吸复合体I中氧化还原诱导的质子泵激活。

Redox-induced activation of the proton pump in the respiratory complex I.

作者信息

Sharma Vivek, Belevich Galina, Gamiz-Hernandez Ana P, Róg Tomasz, Vattulainen Ilpo, Verkhovskaya Marina L, Wikström Mårten, Hummer Gerhard, Kaila Ville R I

机构信息

Department of Physics, Tampere University of Technology, FI-33101 Tampere, Finland;

Helsinki Bioenergetics Group, Programme for Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland;

出版信息

Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11571-6. doi: 10.1073/pnas.1503761112. Epub 2015 Sep 1.

Abstract

Complex I functions as a redox-linked proton pump in the respiratory chains of mitochondria and bacteria, driven by the reduction of quinone (Q) by NADH. Remarkably, the distance between the Q reduction site and the most distant proton channels extends nearly 200 Å. To elucidate the molecular origin of this long-range coupling, we apply a combination of large-scale molecular simulations and a site-directed mutagenesis experiment of a key residue. In hybrid quantum mechanics/molecular mechanics simulations, we observe that reduction of Q is coupled to its local protonation by the His-38/Asp-139 ion pair and Tyr-87 of subunit Nqo4. Atomistic classical molecular dynamics simulations further suggest that formation of quinol (QH2) triggers rapid dissociation of the anionic Asp-139 toward the membrane domain that couples to conformational changes in a network of conserved charged residues. Site-directed mutagenesis data confirm the importance of Asp-139; upon mutation to asparagine the Q reductase activity is inhibited by 75%. The current results, together with earlier biochemical data, suggest that the proton pumping in complex I is activated by a unique combination of electrostatic and conformational transitions.

摘要

复合物I在线粒体和细菌的呼吸链中作为一种氧化还原偶联质子泵发挥作用,由NADH对醌(Q)的还原驱动。值得注意的是,Q还原位点与最远的质子通道之间的距离将近200埃。为了阐明这种长程偶联的分子起源,我们结合了大规模分子模拟和对一个关键残基的定点诱变实验。在混合量子力学/分子力学模拟中,我们观察到Q的还原与其通过Nqo4亚基的His-38/Asp-139离子对和Tyr-87进行的局部质子化偶联。原子经典分子动力学模拟进一步表明,醌醇(QH2)的形成触发了阴离子Asp-139向膜结构域的快速解离,这与保守带电残基网络中的构象变化偶联。定点诱变数据证实了Asp-139的重要性;突变为天冬酰胺后,Q还原酶活性受到75%的抑制。目前的结果与早期的生化数据一起表明,复合物I中的质子泵浦由静电和构象转变的独特组合激活。

相似文献

1
Redox-induced activation of the proton pump in the respiratory complex I.
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11571-6. doi: 10.1073/pnas.1503761112. Epub 2015 Sep 1.
2
Redox-coupled quinone dynamics in the respiratory complex I.
Proc Natl Acad Sci U S A. 2018 Sep 4;115(36):E8413-E8420. doi: 10.1073/pnas.1805468115. Epub 2018 Aug 17.
3
Coupling of electron transfer to proton uptake at the Q(B) site of the bacterial reaction center: a perspective from FTIR difference spectroscopy.
Biochim Biophys Acta. 2008 Oct;1777(10):1229-48. doi: 10.1016/j.bbabio.2008.06.012. Epub 2008 Jul 11.
4
Symmetry-related proton transfer pathways in respiratory complex I.
Proc Natl Acad Sci U S A. 2017 Aug 1;114(31):E6314-E6321. doi: 10.1073/pnas.1706278114. Epub 2017 Jul 17.
5
Electrostatics, hydration, and proton transfer dynamics in the membrane domain of respiratory complex I.
Proc Natl Acad Sci U S A. 2014 May 13;111(19):6988-93. doi: 10.1073/pnas.1319156111. Epub 2014 Apr 28.
6
Role of water and protein dynamics in proton pumping by respiratory complex I.
Sci Rep. 2017 Aug 10;7(1):7747. doi: 10.1038/s41598-017-07930-1.
7
Terminal Electron-Proton Transfer Dynamics in the Quinone Reduction of Respiratory Complex I.
J Am Chem Soc. 2017 Nov 15;139(45):16282-16288. doi: 10.1021/jacs.7b08486. Epub 2017 Nov 1.
8
How cardiolipin modulates the dynamics of respiratory complex I.
Sci Adv. 2019 Mar 20;5(3):eaav1850. doi: 10.1126/sciadv.aav1850. eCollection 2019 Mar.
9
Quinone Catalysis Modulates Proton Transfer Reactions in the Membrane Domain of Respiratory Complex I.
J Am Chem Soc. 2023 Aug 9;145(31):17075-17086. doi: 10.1021/jacs.3c03086. Epub 2023 Jul 25.
10
How inter-subunit contacts in the membrane domain of complex I affect proton transfer energetics.
Biochim Biophys Acta Bioenerg. 2018 Sep;1859(9):734-741. doi: 10.1016/j.bbabio.2018.06.001. Epub 2018 Jun 5.

引用本文的文献

1
Molecular Principles of Proton-Coupled Quinone Reduction in the Membrane-Bound Superoxide Oxidase.
J Am Chem Soc. 2025 Feb 26;147(8):6866-6879. doi: 10.1021/jacs.4c17055. Epub 2025 Feb 12.
2
Graph theory approaches for molecular dynamics simulations.
Q Rev Biophys. 2024 Dec 10;57:e15. doi: 10.1017/S0033583524000143.
3
4
Quinone chemistry in respiratory complex I involves protonation of a conserved aspartic acid residue.
FEBS Lett. 2024 Dec;598(23):2856-2865. doi: 10.1002/1873-3468.15013. Epub 2024 Sep 11.
5
Mechanistic Principles of Hydrogen Evolution in the Membrane-Bound Hydrogenase.
J Am Chem Soc. 2024 Jul 3;146(26):18019-18031. doi: 10.1021/jacs.4c04476. Epub 2024 Jun 18.
6
Quinone Catalysis Modulates Proton Transfer Reactions in the Membrane Domain of Respiratory Complex I.
J Am Chem Soc. 2023 Aug 9;145(31):17075-17086. doi: 10.1021/jacs.3c03086. Epub 2023 Jul 25.
8
Binding of Natural Inhibitors to Respiratory Complex I.
Pharmaceuticals (Basel). 2022 Aug 31;15(9):1088. doi: 10.3390/ph15091088.
9
Respiratory complex I with charge symmetry in the membrane arm pumps protons.
Proc Natl Acad Sci U S A. 2022 Jul 5;119(27):e2123090119. doi: 10.1073/pnas.2123090119. Epub 2022 Jun 27.

本文引用的文献

2
New perspectives on proton pumping in cellular respiration.
Chem Rev. 2015 Mar 11;115(5):2196-221. doi: 10.1021/cr500448t. Epub 2015 Feb 19.
3
Electron tunneling rates in respiratory complex I are tuned for efficient energy conversion.
Angew Chem Int Ed Engl. 2015 Feb 23;54(9):2844-8. doi: 10.1002/anie.201410967. Epub 2015 Jan 19.
4
Structural biology. Mechanistic insight from the crystal structure of mitochondrial complex I.
Science. 2015 Jan 2;347(6217):44-9. doi: 10.1126/science.1259859.
6
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
7
Electrostatics, hydration, and proton transfer dynamics in the membrane domain of respiratory complex I.
Proc Natl Acad Sci U S A. 2014 May 13;111(19):6988-93. doi: 10.1073/pnas.1319156111. Epub 2014 Apr 28.
8
Site-specific chemical labeling of mitochondrial respiratory complex I through ligand-directed tosylate chemistry.
Biochemistry. 2014 Apr 15;53(14):2307-17. doi: 10.1021/bi500205x. Epub 2014 Apr 2.
9
Oxidoreduction properties of bound ubiquinone in Complex I from Escherichia coli.
Biochim Biophys Acta. 2014 Feb;1837(2):246-50. doi: 10.1016/j.bbabio.2013.11.001. Epub 2013 Nov 9.
10
A long road towards the structure of respiratory complex I, a giant molecular proton pump.
Biochem Soc Trans. 2013 Oct;41(5):1265-71. doi: 10.1042/BST20130193.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验