Suppr超能文献

呼吸复合体I中氧化还原诱导的质子泵激活。

Redox-induced activation of the proton pump in the respiratory complex I.

作者信息

Sharma Vivek, Belevich Galina, Gamiz-Hernandez Ana P, Róg Tomasz, Vattulainen Ilpo, Verkhovskaya Marina L, Wikström Mårten, Hummer Gerhard, Kaila Ville R I

机构信息

Department of Physics, Tampere University of Technology, FI-33101 Tampere, Finland;

Helsinki Bioenergetics Group, Programme for Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland;

出版信息

Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11571-6. doi: 10.1073/pnas.1503761112. Epub 2015 Sep 1.

Abstract

Complex I functions as a redox-linked proton pump in the respiratory chains of mitochondria and bacteria, driven by the reduction of quinone (Q) by NADH. Remarkably, the distance between the Q reduction site and the most distant proton channels extends nearly 200 Å. To elucidate the molecular origin of this long-range coupling, we apply a combination of large-scale molecular simulations and a site-directed mutagenesis experiment of a key residue. In hybrid quantum mechanics/molecular mechanics simulations, we observe that reduction of Q is coupled to its local protonation by the His-38/Asp-139 ion pair and Tyr-87 of subunit Nqo4. Atomistic classical molecular dynamics simulations further suggest that formation of quinol (QH2) triggers rapid dissociation of the anionic Asp-139 toward the membrane domain that couples to conformational changes in a network of conserved charged residues. Site-directed mutagenesis data confirm the importance of Asp-139; upon mutation to asparagine the Q reductase activity is inhibited by 75%. The current results, together with earlier biochemical data, suggest that the proton pumping in complex I is activated by a unique combination of electrostatic and conformational transitions.

摘要

复合物I在线粒体和细菌的呼吸链中作为一种氧化还原偶联质子泵发挥作用,由NADH对醌(Q)的还原驱动。值得注意的是,Q还原位点与最远的质子通道之间的距离将近200埃。为了阐明这种长程偶联的分子起源,我们结合了大规模分子模拟和对一个关键残基的定点诱变实验。在混合量子力学/分子力学模拟中,我们观察到Q的还原与其通过Nqo4亚基的His-38/Asp-139离子对和Tyr-87进行的局部质子化偶联。原子经典分子动力学模拟进一步表明,醌醇(QH2)的形成触发了阴离子Asp-139向膜结构域的快速解离,这与保守带电残基网络中的构象变化偶联。定点诱变数据证实了Asp-139的重要性;突变为天冬酰胺后,Q还原酶活性受到75%的抑制。目前的结果与早期的生化数据一起表明,复合物I中的质子泵浦由静电和构象转变的独特组合激活。

相似文献

1
Redox-induced activation of the proton pump in the respiratory complex I.呼吸复合体I中氧化还原诱导的质子泵激活。
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11571-6. doi: 10.1073/pnas.1503761112. Epub 2015 Sep 1.
2
Redox-coupled quinone dynamics in the respiratory complex I.氧化还原偶联的醌在呼吸复合物 I 中的动态。
Proc Natl Acad Sci U S A. 2018 Sep 4;115(36):E8413-E8420. doi: 10.1073/pnas.1805468115. Epub 2018 Aug 17.
4
Symmetry-related proton transfer pathways in respiratory complex I.呼吸复合物 I 中与对称性相关的质子转移途径。
Proc Natl Acad Sci U S A. 2017 Aug 1;114(31):E6314-E6321. doi: 10.1073/pnas.1706278114. Epub 2017 Jul 17.
8
How cardiolipin modulates the dynamics of respiratory complex I.如何调节心磷脂呼吸复合物 I 的动力学。
Sci Adv. 2019 Mar 20;5(3):eaav1850. doi: 10.1126/sciadv.aav1850. eCollection 2019 Mar.

引用本文的文献

5
Mechanistic Principles of Hydrogen Evolution in the Membrane-Bound Hydrogenase.膜结合氢化酶中氢的演化的机械原理。
J Am Chem Soc. 2024 Jul 3;146(26):18019-18031. doi: 10.1021/jacs.4c04476. Epub 2024 Jun 18.
8
Binding of Natural Inhibitors to Respiratory Complex I.天然抑制剂与呼吸链复合体I的结合
Pharmaceuticals (Basel). 2022 Aug 31;15(9):1088. doi: 10.3390/ph15091088.
9
Respiratory complex I with charge symmetry in the membrane arm pumps protons.具有膜臂电荷对称性的呼吸复合物 I 泵质子。
Proc Natl Acad Sci U S A. 2022 Jul 5;119(27):e2123090119. doi: 10.1073/pnas.2123090119. Epub 2022 Jun 27.

本文引用的文献

2
New perspectives on proton pumping in cellular respiration.细胞呼吸中质子泵浦的新视角。
Chem Rev. 2015 Mar 11;115(5):2196-221. doi: 10.1021/cr500448t. Epub 2015 Feb 19.
9
Oxidoreduction properties of bound ubiquinone in Complex I from Escherichia coli.大肠杆菌复合体I中结合态泛醌的氧化还原特性
Biochim Biophys Acta. 2014 Feb;1837(2):246-50. doi: 10.1016/j.bbabio.2013.11.001. Epub 2013 Nov 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验