Sharma Vivek, Belevich Galina, Gamiz-Hernandez Ana P, Róg Tomasz, Vattulainen Ilpo, Verkhovskaya Marina L, Wikström Mårten, Hummer Gerhard, Kaila Ville R I
Department of Physics, Tampere University of Technology, FI-33101 Tampere, Finland;
Helsinki Bioenergetics Group, Programme for Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland;
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11571-6. doi: 10.1073/pnas.1503761112. Epub 2015 Sep 1.
Complex I functions as a redox-linked proton pump in the respiratory chains of mitochondria and bacteria, driven by the reduction of quinone (Q) by NADH. Remarkably, the distance between the Q reduction site and the most distant proton channels extends nearly 200 Å. To elucidate the molecular origin of this long-range coupling, we apply a combination of large-scale molecular simulations and a site-directed mutagenesis experiment of a key residue. In hybrid quantum mechanics/molecular mechanics simulations, we observe that reduction of Q is coupled to its local protonation by the His-38/Asp-139 ion pair and Tyr-87 of subunit Nqo4. Atomistic classical molecular dynamics simulations further suggest that formation of quinol (QH2) triggers rapid dissociation of the anionic Asp-139 toward the membrane domain that couples to conformational changes in a network of conserved charged residues. Site-directed mutagenesis data confirm the importance of Asp-139; upon mutation to asparagine the Q reductase activity is inhibited by 75%. The current results, together with earlier biochemical data, suggest that the proton pumping in complex I is activated by a unique combination of electrostatic and conformational transitions.
复合物I在线粒体和细菌的呼吸链中作为一种氧化还原偶联质子泵发挥作用,由NADH对醌(Q)的还原驱动。值得注意的是,Q还原位点与最远的质子通道之间的距离将近200埃。为了阐明这种长程偶联的分子起源,我们结合了大规模分子模拟和对一个关键残基的定点诱变实验。在混合量子力学/分子力学模拟中,我们观察到Q的还原与其通过Nqo4亚基的His-38/Asp-139离子对和Tyr-87进行的局部质子化偶联。原子经典分子动力学模拟进一步表明,醌醇(QH2)的形成触发了阴离子Asp-139向膜结构域的快速解离,这与保守带电残基网络中的构象变化偶联。定点诱变数据证实了Asp-139的重要性;突变为天冬酰胺后,Q还原酶活性受到75%的抑制。目前的结果与早期的生化数据一起表明,复合物I中的质子泵浦由静电和构象转变的独特组合激活。